How to survive the Data Deluge: Petabyte scale Cloud Computing

Gianmarco De Francisci Morales
IMT Institute for Advanced Studies Lucca
CSE PhD XXIV Cycle

18 Jan 2010

Outline

- Part I: Introduction
 - What, Why and History
- Part 2: Technology overview
 - Current systems and comparison
- Part 3: Research directions
 - Ideas for future improvements

Part I Introduction

How would you sort...

- ... IGB of data?
- ... I00GB of data?
- ... IOTB of data?
- Scale matters!
 - Because More Isn't Just More,
 More Is Different

20 TERABYTE 120 TERABYTE 330 TERABYTE 1 TERABYTE A \$200 HARD DRIVE PHOTOS UPLOADED TO ALL THE DATA DATA THAT AND IMAGES THE LARGE HADRON THAT HOLDS **FACEBOOK EACH MONTH** COLLECTED BY COLLIDER WILL 260,000 SONGS. THE HUBBLE PRODUCE EACH WEEK. SPACE TELESCOPE. **460 TERABYTE** 530 TERABYTE **600 TERABYTE** 1 PETABYTE ALL THE DIGITAL ALL THE VIDEOS ANCESTRY.COM'S DATA PROCESSED ON YOUTUBE. GENEALOGY BY GOOGLE'S WEATHER SERVERS EVERY DATA COMPILED DATABASE (INCLUDES BY THE NATIONAL ALL U.S. CENSUS 72 MINUTES. CLIMATIC DATA RECORDS 1790-2000). CENTER.

The Petabyte Age

What is scalability?

- The ability for a system to accept increased volume without impacting the profits
- Scale-free systems
- Scale-up vs Scale-out
- Types of parallel architectures:
 - Shared memory, Shared disk, Shared nothing

What if you need...

- ... to store and analyze IOTB of data per day?
 - Parallel is a must, but not enough
- Usual approaches fail at this scale because of secondary effects
 - Operational costs
 - Faults

What is fault tolerance?

- System operates properly in spite of the failure of some of its components
- High Availability
- Real world need
 - Software has bugs
 - Hardware fails

Why data?

- The world is drowning in data: Data Deluge
- Data sources:
 - Web 2.0 (user generated content)
 - Scientific experiments
 - Physics (particle accelerators)
 Astronomy (satellite images)
 Biology (genomic maps)
 - Can you think of others?

"Data is not information, information is not knowledge, knowledge is not wisdom."

Clifford Stoll

DBMS evolution

- '60s CODASYL
- '70s Relational DBMS
- '80s Object-Oriented DBMS (Back to navigation)
- '80s & '90s Parallel DBMS
- Not much has happened since the '70s
 - The fundamental model and the code lines are still the same

DBMS yesterday

- Business transaction processing (OLTP)
- Relational model
- SQL

DBMS today

- Different markets (OLTP, OLAP, Stream, etc..)
- Stored Procedures & User Defined Functions
- Parallel DBMS (Teradata, Vertica, etc..)
 - Not enough flexibility
 - Limited fault-tolerance and scalability

Why cloud?

- Parallel computing is dead
 - Amdahl's law: $SpUp(N) = 1 / ((1-P_a)+P_a/N)$
- Long live parallel computing
 - Gustafson's law: $SpUp(N) = P_G*N + (1-P_G)$
 - Physical limits
 - Manycore
 - Money

Parallel computing evolution

- Parallel (single)
- Cluster (intra-site)
- Grid (inter-site)
- Cloud (scale-free)
- What's next?

Parallel computing yesterday

- CPU bound problems
 - Tightly coupled
- Use of MPI or PVM
 - Move data among computing nodes
- Use of NAS/SAN
 - Expensive and does not scale (shared disk)

Parallel computing today

- I/O bound problems (often)
- Move computing near data
- Focus on scalability and fault tolerance
 - Simple!
 - Shared nothing architecture on commodity hardware
 - Data streaming

Wrap-up

- Main motivations
 - Scalability
 - Money
- Focus on BIG data
 - BIG = need to stop & think because of its size
 - Common issues with PDBMS (load balancing, data skew)

Part 2 Technology overview

What is Cloud Computing?

- Did anyone notice I skipped the definition?
 - Buzzword!
- IaaS (EC2, S3)
- PaaS (App Engine, Azure Services Platform)
- SaaS (Salesforce, OnLive, virtually any Web App)
- Scale free computing architecture

Who is involved?

Software stacks

	Google	Yahoo	Microsoft	Others
High Level Languages	Sawzall	Pig/Latin	DryadLINQ, Scope	Hive, Cascading
Computation	MapReduce	Hadoop	Dryad	
Data Abstraction	BigTable	HBase, PNUTS		Cassandra, Voldemort
Distributed Data	GFS	HDFS	Cosmos	CloudStore, Dynamo
Coordination	Chubby	Zookeeper		

Comparison with PDBMS

- CAPTheorem
- BASE vs ACID
- Computing on large data vs Handling large data
- OLAP vs OLTP
- User Defined Functions vs Select-Project-Join
- Nested vs Flat data model

Comparison with PDBMS

- Start small (no upfront schema, flexible, agile)
 Grow big (optimize common patterns)
- MapReduce, a major step backwards
 DeWitt, Stonebraker
- "If the only tool you have is a hammer, you tend to see every problem as a nail"
 Abraham Maslow
- SQL and Relational Model are not the answer

Wrap-up

- A lot of hype
 - But also activity
 - Industry is leading the trend, has cutting edge software
- Different approaches
 - Most focus on MapReduce
 - Shift toward higher level abstractions

Wrap-up

- NoSQL movement
 - No Relational Model
 - No ACID
 - No Join

Part 3 Research Directions

- Extensions
- Models
- High velocity analytics
- Hybrid systems
- Optimizations

Extensions

- Map-Reduce-Merge: simplified relational data processing on large clusters.
 H. Yang, A. Dasdan, R. Hsiao, and D. Parker. In SIGMOD 2007.
- Goal: implement relational operators efficiently
- How: new final phase that merges 2 key-value lists
- Issues: very low level and hard to use needs integration into a high level language

Models

- A new computation model for rack-based computing. F. Afrati and J. Ullman. Unpublished.
- Goal: I/O cost characterization
- Issues: only theoretical analysis no existing reference system
- Future: best algorithms for the model model adaptation to real systems

Models

- A model of computation for MapReduce.
 H. Karloff, S. Suri, and S. Vassilvitskii. In SODA, 2010.
- Goal: theoretical computability characterization of MapReduce algorithms
- Result: algorithmic design technique for MapReduce
- Future: develop algorithms in this class find relationships with other classes

High velocity analytics

- Interactive analysis of web-scale data.
 C. Olston, E. Bortnikov, K. Elmeleegy, F. Junqueira, B. Reed. In CIDR, 2009.
- Goal: speed up general queries for big data
- How: pre-computed templates to fill at run-time
- Future: which templates are useful for interactive?
 help the user to formulate templates (sampling?)

High velocity analytics

- MapReduce online.
 T. Condie, N. Conway, P. Alvaro, J. Hellerstein, K. Elmeleegy, and R. Sears.
 Technical report, University of California, Berkeley, 2009.
- Goal: speed up turnaround of MapReduce jobs
- How: operator pipelining, online aggregation
- Issues: limited inter-job pipelining (data only) inter-job aggregation problematic (scratch data)

Hybrid systems

- HadoopDB: an architectural hybrid of MapReduce and DBMS technologies for analytical workloads.
 A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, A. Rasin. In VLDB, 2009.
- Goal: advantages of both DB and MapReduce
- How: integrate a DBMS (PostgreSQL) in Hadoop,
 Hive as interface
- Issues: better reuse principles than technology

Optimizations

- The Curse of Zipf and Limits to Parallelization:
 A Look at the Stragglers Problem in MapReduce.
 J. Lin. In LSDS-IR, 2009.
- Goal: data distribution effects on MapReduce parallel query/pairwise similarity as case study
- How: balance input data (split long posting lists)
- Issues: very specific for the problem/algorithm

Other ideas

- Sampling and result estimation
 - A good enough result is often acceptable
- Semantic clues
 - Leverage properties of M/R functions (associativity, commutativity)
 - Properties of the input may speed up the computation

Wrap-up

- New and active field
 - Many opportunities for research
- Crossroad of Distributed Systems and Databases
 - Answer the plea not to "reinvent the wheel"

How to survive the Data Deluge: Petabyte scale Cloud Computing

- Integrate DB principles into Cloud systems
- Enable interactive and approximate analytics
- Evolve beyond the MapReduce paradigm

Questions?