
Data Mining and Knowledge Discovery manuscript No.
(will be inserted by the editor)

Activity Preserving Graph Simplification

Francesco Bonchi ·
Gianmarco De Francisci Morales ·
Aristides Gionis · Antti Ukkonen

Received: date / Accepted: date

Abstract We study the problem of simplifying a given directed graph by
keeping a small subset of its arcs. Our goal is to maintain the connectivity
required to explain a set of observed traces of information propagation across
the graph. Unlike previous work, we do not make any assumption about an
underlying model of information propagation. Instead, we approach the task
as a combinatorial problem.

We prove that the resulting optimization problem is NP-hard. We show
that a standard greedy algorithm performs very well in practice, even though
it does not have theoretical guarantees. Additionally, if the activity traces
have a tree structure, we show that the objective function is supermodular,
and experimentally verify that the approach for size-constrained submodular
minimization recently proposed by Nagano et al. (2011) produces very good
results. Moreover, when applied to the task of reconstructing an unobserved
graph, our methods perform comparably to a state-of-the-art algorithm de-
vised specifically for this task.

Keywords Information propagation, graph sparsification, submodular
minimization

1 Introduction

Simplifying graphs is a problem that has been studied extensively. The bulk of
this literature considers only structural properties of the graph. For example,
a spanner of a given graph G is a sparse subgraph of G, so that distances

F. Bonchi, G. De Francisci Morales
Yahoo! Research Barcelona, Spain.
E-mail: {bonchi,gdfm}@yahoo-inc.com

A. Gionis, A. Ukkonen
HIIT / Aalto University, Finland.
E-mail: {aristides.gionis,antti.ukkonen}@aalto.fi



2

between pairs of nodes in G are not distorted by much when measured on
the spanner subgraph (Peleg and Schäffer 1989). Other problem formulations
involve sparsifying a graph with the objective of preserving the flow properties
(Misio lek and Chen 2006), the cuts (Fung et al 2011), the connectivity (Zhou
et al 2010), or the community structure of the original graph (Arenas et al
2007).

In this paper we study the problem of simplifying a graph while maintaining
the connectivity required to explain a given set of observed activity traces over
the graph. Similar to the work by Mathioudakis et al (2011), our goal is to
identify the most important pathways of the graph for understanding observed
information propagation across its nodes. However, in contrast to previous
work, we take a model-free approach. This gives the methods proposed in this
paper wider applicability, because different types of information propagation,
such as sharing a link on Facebook on the one hand, or adopting a product on
the other, are unlikely to follow the same principles of contagion. Therefore, a
single model may not fit all applications. We suggest to overcome this problem
by not using a model at all. To summarize, sparsifying a graph on the basis of
observed activation traces can be useful in many applications, among others:

Information propagation in social networks. In this case, the graph is
the social network and entities represent information memes that spread in
the network. Finding the social ties that are the most important information-
diffusion channels can be a useful tool to answer questions such as “what
distinguishes the way politics memes and sport memes propagate?” or
“what is the structural difference between the backbones of actual news
and false rumors?”

Network reconstruction (Gomez-Rodriguez et al 2010). In some cases
we might only observe a set of traces, but not the arcs of the underlying
graph. Our methods for finding the most important arcs can also be used
to reconstruct an unobserved graph by sparsifying an imaginary complete
graph on the nodes.

Website usage analysis and re-organization (Srikant and Yang 2001).
The graph represents webpages and links between these, and every trace
corresponds to the activity of a certain user in the website. By sparsifying
the graph we can find the most important hyperlinks, which might pro-
vide important information regarding user behavior inside the website and
reachability of different parts of the website.

Information filtering and personalization. Given the amount of infor-
mation received by the average user of on-line social networks such as
facebook or twitter, simplifying the social graph on the basis of previ-
ously observed traces can be used to identify the important connections of a
user, and e.g. give preference to messages arriving along these connections.

Influence maximization. Graph simplification can be used as a data re-
duction mechanism in the seed selection problem (Kempe et al 2003). In
our previous work (Mathioudakis et al 2011) we show that sparsifying the



3

social graph on the basis of past traces yields significant improvements in
terms of efficiency and scalability, while sacrificing little in terms of quality.

In this paper we consider the following problem, illustrated by the simple
example in Fig. 1. We are given a directed graph G = (N,A), and a database
of activation traces. Our task is to select a small subset of arcs from A that
maintain connectivity in the traces. Fig. 1 shows a directed graph G together
with two traces, denoted φ1 and φ2. (In real applications we can have tens of
thousands of traces.)

The graph G represents relations between nodes, and the traces correspond
to, e.g., information cascades in the graph G. Each trace is a directed acyclic
graph (DAG) defined on a subset of N , and it captures the temporal order in
which the nodes got activated. A trace φ has an arc from node u to node v if
the arc (u, v) exists in A and the node u got activated before node v. In trace
φ1 of Fig. 1 node b must have been activated before node c, because the arc
(c, b) does not exist in φ1 even though it is an arc of G. The nodes of a trace
with zero in-degree are called sources. In Fig. 1 both traces φ1 and φ2 have
only a single source: the node a.

Given a simplified graph, the coverage of a trace is the number of nodes
that can be reached from at least one source along a path in the simplified
graph. Note that the sources do not contribute to the coverage. Our task is to
simplify the input graph G by keeping only a small subset of its arcs so that
the coverage over all input traces is maximized. In the toy example of Fig. 1,
the subgraph consisting only of the arcs (a, c), (c, f), and (b, d) has a coverage
of 1 in trace φ1, and a coverage of 2 in trace φ2, for a total coverage of 3. The
subgraph with arcs (a, c) and (c, d) has a total coverage of 4, as both φ1 and
φ2 have a coverage of 2. There are thus two objectives to optimize: minimize
the number of arcs in the simplified graph and maximize the coverage. In this
example we would prefer the latter subgraph, because it is smaller and yields
a larger coverage. Observe that we do not assume any particular generative
process for the traces when computing coverage.

d

cb

a

φ1

d

c

e

a

f

b

f

G

d

c

e

a

f

φ2

Fig. 1 A directed graph G and two traces, φ1 and φ2.



4

To avoid a multi-objective optimization problem, we can constrain one
quantity and optimize the other, and thus obtain two complementary problem
formulations. We name the two problems MaxCover and MinArcSet, and
we show they are NP-hard.

We show that when traces are general DAGs, coverage is neither submod-
ular nor supermodular. As a consequence the standard greedy heuristic that
adds arcs by maximizing marginal gain in coverage has no provable quality
guarantees. Nonetheless, our empirical evaluation shows that Greedy gives very
good solutions in practice.

In some applications the parent of a node in a trace is unique. This can
happen for instance when information propagates by an explicit repost via a
certain neighboring node. We show that if all input traces are directed trees
rooted at the sources, then the coverage function is supermodular. In Fig. 1
the trace φ2 is such a tree, but the trace φ1 is not. Since maximizing a su-
permodular function is equivalent to minimizing a submodular function, we
develop an algorithm based on recent advances in size-constrained submodu-
lar minimization by Nagano et al (2011). This algorithm, called MNB, gives
optimal solutions for some sizes of the simplified graph. These sizes, however,
can not be specified in advance, but are part of the output of the algorithm.

We implemented both methods and applied them on real datasets. The
main conclusions drawn from our empirical evaluation are the following.

• The greedy algorithm is a reliable method that gives good results and scales
gracefully. Over all our datasets, Greedy achieves a performance that is at
least 85% of the optimal.

• With tree-shaped traces MNB is the most efficient algorithm and outper-
forms Greedy by up to two orders of magnitude in running time.

• We apply our algorithms to the task of reconstructing an unobserved graph
based on observed propagations by simplifying a complete graph (clique).
The empirical evaluation suggests that our methods slightly outperform
NetInf (Gomez-Rodriguez et al 2010), an algorithm specifically designed
for this network-reconstruction task.

• We use our methods to simplify a graph where the arcs contain social-
influence information, as a preprocessing step before influence maximiza-
tion, as done by Mathioudakis et al (2011). When compared to their algo-
rithm, our methods perform reasonably well, although our methods are at
a disadvantage as explained in detail in Section 5.

The rest of the paper is organized as follows. In Section 2 we review related
work. In Section 3 we formally define our problem and study the properties
of our objective function. Our algorithms are discussed in Section 4 and our
empirical evaluation is presented in Section 5. Finally, Section 6 concludes by
outlining open problems and future research directions.



5

2 Related work

Conceptually, our work contributes to the literature on network simplification,
the goal of which is to identify subnetworks that preserve properties of a given
network. Toivonen et al (2010) as well as Zhou et al (2010), for instance,
prune arcs while keeping the quality of best paths between all pairs of nodes,
where quality is defined on concepts such as shortest path or maximum flow.
Misio lek and Chen (2006) prune arcs while maintaining the source-to-sink
flow for each pair of nodes. In the theory community, the notion of k-spanner
refers to a sparse subgraph that maintains the distances in the original graph
up to a factor of k. The problem is to find the sparsest k-spanner (Elkin and
Peleg 2005). In pathfinder networks (Quirin et al 2008, Serrano et al 2010) the
approach is to select weighted arcs that do not violate the triangular inequality.
Fung et al (2011) study cut-sparsifiers, i.e., subsets of arcs that preserve cuts
up to a multiplicative error. Serrano et al (2009) and Foti et al (2011) focus
on weighted networks and select arcs that represent statistically significant
deviations with respect to a null model. In a similar setting, Arenas et al
(2007) select arcs that preserve modularity, a measure that quantifies quality
of community structure.

The approach we take in this paper is substantially different from the work
discussed above. The main difference is that our problem of simplification is
defined in terms of observed activity in the network, and not only in terms of
structural properties of the network. A similar approach is taken by Gomez-
Rodriguez et al (2011; 2010) and Mathioudakis et al (2011). Gomez-Rodriguez
et al (2011; 2010) assume that connections between nodes are unobserved, and
use observed traces of activity to infer a sparse, “hidden” network of infor-
mation diffusion. Mathioudakis et al (2011) instead focus on sparsifying an
available network. Both lines of research build on a probabilistic propagation
model that relies on estimated “influence probabilities” between nodes. In con-
trast, we define graph simplification as a combinatorial problem that does not
assume any underlying propagation model. This is an important contribution,
because the accuracy of propagation models to describe real-world phenom-
ena has not been shown conclusively. Our empirical evaluation suggests that
our model-free methods compare well with the model-based approaches by
Gomez-Rodriguez et al (2010) and Mathioudakis et al (2011).

3 Problem definition

In this section we provide formal definitions of the concepts that we already
introduced in Section 1. Our examples come from the context of social media,
but we want to emphasize that the results and algorithms are agnostic of the
application, and can easily be used with suitable data from any domain.

Underlying graph. The first input to our problem is a directed graph G =
(N,A). The direction of the arcs in A indicates the direction in which in-
formation propagates. As an example, in Twitter the arc (u, v) belongs to A



6

whenever user v follows user u, and therefore information can potentially flow
from u to v.

In some cases it is not possible to observe the graph. For example, when
studying the blogosphere we may assume that any blog can influence any
other blog even though there are no explicit links in between. When the graph
is not observable, we simply assume that the set of arcs A is complete, i.e.,
A = N ×N .

Traces over the graph. The second input to our problem is a set Π of
traces of information propagation over G. Each trace φ ∈ Π corresponds to
a different piece of information. When a piece of information reaches a node,
we say the node becomes activated in the corresponding trace. For example,
in Twitter a trace could correspond to some particular URL, and a user is
activated whenever she tweets that URL. By considering different URLs, we
obtain a set of different traces. Note that a node can become activated only
once in the same trace.

We represent traces as directed acyclic graphs (DAGs) that capture the
temporal order in which the node activations occur in G. Formally, a trace
φ is represented by a DAG Gφ = (Nφ, Aφ), where Nφ is the set of activated
nodes, and Aφ is a set of arcs that indicate potential information flow in G.
That is, we have (u, v) ∈ Aφ whenever (u, v) is an arc of G, both u and v
belong to Nφ, and u got activated before v in φ. Note that (u, v) ∈ Aφ does
not imply that v indeed was “influenced” by u in any way. The trace graph Gφ
merely indicates the possible information pathways of a trace φ in G. Finally,
nodes in Nφ with no incoming arcs in Aφ are called trace sources, and belong
to the set Sφ. A node is a source if it is among the first nodes of a trace to
become active, meaning it has no neighbors that got activated earlier in the
same trace.

As detailed in Section 3.1, when traces have a tree structure they possess in-
teresting properties that we can leverage in our algorithms. Before formalizing
the problem, we provide motivation why considering tree traces is an interest-
ing special case. There are many cases where we can unambiguously observe
the information propagation paths. For example, when considering re-tweeting
activity in Twitter, either the string ‘RT@’ is present in the tweet text, followed
by the username of the information source, or an explicit retweet source field
is available via the API. Likewise in Facebook, when users share, say, links,
the source is always explicitly mentioned. As our objective is to provide meth-
ods to study information propagation in networks, using tree traces is a very
meaningful abstraction for many real-world applications.

Definition 1 (Tree traces) Let Gφ = (Nφ, Aφ) represent a trace φ with
set of sources Sφ. A trace φ is a tree trace if it is the disjoint union of directed
trees rooted at the source nodes Sφ.

According to Definition 1, a trace is a tree trace when the DAG has one
connected component for each source. Without loss of generality, if the trace
has multiple sources we can consider each as a separate trace. Therefore, here-
after we refer to a tree trace as a single directed tree rooted at the source.



7

Objective function. Our objective function is the coverage attained by a set
of arcs A′. A precise definition of coverage is given below. In less formal terms,
coverage referes to the total number of nodes in every trace that are reachable
from one of the sources of the trace by using only arcs in A′.

Definition 2 (Reachability) Let Gφ = (Nφ, Aφ) represent a trace φ with
set of sources Sφ, and let u ∈ Nφ \ Sφ. For a set of arcs A′ ⊆ A we define the
variable r(A′, u | φ) to be 1 if there is a path in Gφ from any node in Sφ to u
using only arcs in A′. If no such path exists we define r(A′, u | φ) to be 0.

Definition 3 (Coverage) Consider a graph G = (N,A) and a set of traces
Π. We define the coverage of a set of arcs A′ ⊆ A as

CΠ(A′) =
∑
φ∈Π

∑
u∈Nφ\Sφ

r(A′, u | φ). (1)

For simplicity of notation, and when the set of traces is implied by the context,
we also write C(A′) for CΠ(A′).

Our goal is to find a small set of arcs that has large coverage. Thus, there
are two quantities to optimize: the number of arcs and the coverage achieved.
We can constrain one quantity and optimize the other, thus obtaining two
complementary problem formulations.

Problem 1 (MaxCover) Consider a graph G = (N,A), a set of traces Π,
and an integer k. Find a set of arcs A′ ⊆ A of cardinality at most k that
maximizes the coverage CΠ(A′).

Problem 2 (MinArcSet) Consider a graph G = (N,A), a set of traces
Π, and a coverage ratio η ∈ [0, 1]. Find a set of arcs A′ ⊆ A of minimum
cardinality such that CΠ(A′) ≥ η

∑
φ∈Π |Nφ \ Sφ|.

3.1 Problem characterization

Next we discuss the complexity of MaxCover and MinArcSet, and study
the properties of the coverage function.

We first note that MaxCover and MinArcSet are equivalent: for in-
stance, if there is an algorithm A that solves the MaxCover problem, then
we can solve the MinArcSet problem with calls to A while performing a
binary search on the parameter k. Indeed both problems, are optimization
versions of the same decision problem, (k, η)-Cover.

Problem 3 ((k, η)-Cover) Consider a graph G = (N,A), a set of traces Π,
a number k, and a coverage ratio η ∈ [0, 1]. Does there exist a set of arcs
A′ ⊆ A such that |A′| ≤ k and CΠ(A′) ≥ η

∑
φ∈Π |Nφ \ Sφ|.

Theorem 1 The (k, η)-Cover problem is NP-hard.



8

d

α	
  β

c

βb

β

e

α	
  β

a

α

b'

β

Fig. 2 A counterexample that shows that the coverage measure is neither submodular nor
supermodular.

Proof. We obtain a reduction from the SetCover problem, which is an NP-
complete problem defined as follows. A problem instance for SetCover is
specified by a ground set U = {1, . . . , n} of n elements, a collection X =
{X1, . . . , Xm} of subsets of U , and a number k. A solution to SetCover is
provided by a sub-collection X ′ ⊂ X of at most k sets that covers the ground
set U , i.e.,

⋃
Xi∈X ′ Xi = U . The SetCover problem is to decide whether

there exists a solution, given a problem instance.

We now proceed to build an instance of the (k, η)-Cover problem starting
from an instance of SetCover. Given the ground set U and the set collection
X = {X1, . . . , Xm}, we build a graph G = (N,A) with m + 1 nodes where
N = {v1, . . . , vm, w}, i.e., there is a node vi for each set Xi and one additional
node w. The set of arcs of G is A = {(vi, w)}mi=1, i.e., there is an arc from each
node vi to w. The set of traces Π will contain the trace φu for every element
u ∈ U , meaning |Π| = |U |. The DAG of φu has an arc from vi to w for every
Xi that contains u, that is, Aφu = {(vi, w) | u ∈ Xi}. Note that in every
φu every vertex except w is a source node, and is thus always reachable, i.e.
|Nφ \Sφ| = 1. Hence, the maximum coverage is equal to the size of U . Finally,
we set the arc budget k equal to the parameter k of the SetCover instance,
and η = 1, i.e., we seek complete cover.

Clearly any solutionA′ to the (k, η)-Cover problem can be directly mapped
to a solution of the original SetCover problem instance we were given: in-
clude the set Xi to the SetCover solution if the arc (vi, w) belongs to the
(k, η)-Cover solution. Any solution A′ to (k, η)-Cover that is at most of
size k and has coverage ratio η = 1 (and thus coverage |U |) must map to a
SetCover solution that is at most of size k and covers the entire universe U .

A direct corollary of Theorem 1 is that both problems, MaxCover and
MinArcSet, are NP-hard. We now examine whether the coverage measure
is submodular or supermodular. The reason is that there is extensive litera-
ture on optimizing functions with these properties: for example, greedy strate-
gies provide approximation guarantees when maximizing submodular func-
tions (Nemhauser et al 1978). Recall that, given a ground set U , a function



9

f : 2U → R is submodular if it satisfies the diminishing-returns property

f(X ∪ {z})− f(X) ≥ f(Y ∪ {z})− f(Y ), (2)

for all sets X ⊆ Y ⊆ U and z ∈ U \ Y . The function f is supermodular if −f
is submodular. We first show that the coverage objective function is neither
submodular nor supermodular.

Lemma 1 When Π may contain general DAGs, the coverage function CΠ is
neither submodular nor supermodular.

Proof. We prove the theorem by providing a counterexample for each case.
Consider Figure 2 illustrating a graph G = (N,A), with node set N =
{a, b, b′, c, d, e}, and arc set A = {(a, d), (b, c), (b′, c), (c, d), (d, e)}. Consider a
set of two traces Π = {α, β}, with DAGs Gα = (Nα, Aα) and Gβ = (Nβ , Aβ),
where Nα = {a, d, e}, Aα = {(a, d), (d, e)}, Nβ = {b, b′, c, d, e}, and Aβ =
{(b, c), (b′, c), (c, d), (d, e)}. The source sets are Sα = {a}, and Sβ = {b, b′}.

Consider the following sets of arcs:X = {(a, d)} ⊂ Y = {(a, d), (c, d), (d, e)}
and z = (b, c). We have

CΠ(X ∪ {z})− CΠ(X) = 2− 1 < 5− 2 = CΠ(Y ∪ {z})− CΠ(Y ),

which contradicts Inequality (2) and proves that the coverage function is not
submodular.

Next, let X = {(a, d), (c, d), (d, e)} ⊂ Y = {(a, d), (b, c), (c, d), (d, e)}, and
z = (b′, c). In this case we have

CΠ(X ∪ {z})− CΠ(X) = 5− 2 > 5− 5 = CΠ(Y ∪ {z})− CΠ(Y ),

which conforms to Inequality (2) and proves that the coverage function is not
supermodular.

As a result of Lemma 1, the greedy heuristic does not have any performance
guarantee. On the other hand, the coverage function is supermodular when we
can attribute the activation of a node to precisely one of its neighbors in every
trace in Π. This is true if and only if Π only contains tree traces. For example,
the trace φ1 in Figure 1 is a tree trace, while φ2 of the same figure is not.

Theorem 2 The coverage function CΠ is supermodular when every trace φ ∈
Π is a tree trace.

Proof. We show that the coverage function is supermodular for one trace φ, by
letting Π = {φ}. Since CΠ is additive with respect to traces, and the sum of
supermodular functions is supermodular, the property holds for sets of traces.

Let Z be a set of arcs, and let (u, v) be an arc not in Z. Consider the tree
Gφ of trace φ and denote by R(u, v | Z) the set of nodes in Gφ that become
reachable from any node in Sφ when the arc (u, v) is added to Z. Note that
if u is not reachable from Sφ by using arcs in Z, then the set R(u, v | Z) is
empty. However, if u is reachable from Sφ given Z, R(u, v | Z) will consist



10

of the node v, as well as every node that is reachable from v given Z. If any
vertex that is reachable from v given Z were also reachable from Sφ without
the arc (u, v), the DAG Gφ would not be a tree. We have thus

|R(u, v | Z)| = CΠ(Z ∪ {(u, v)})− CΠ(Z). (3)

To show supermodularity, consider two sets of arcs X and Y , with X ⊆ Y ,
and let (u, v) be an arc not in X or Y . Since X ⊆ Y it is easy to show that

|R(u, v | X)| ≤ |R(u, v | Y )|. (4)

The result follows by combining Equations (3) and (4).

Lemma 1 indicates that optimizing the coverage function in the general
case is a difficult problem. However, for the special case of the problem when
all traces are trees, we use the result of Theorem 2 to develop an efficient and
nontrivial algorithm, which is described in the next section. Furthermore, our
techniques can be useful even when the observed traces are not trees, but gen-
eral DAGs. This can be done by first converting the observed DAGs into trees
via an application-dependent heuristic. Although we have not experimented
with such ideas for this paper, we think that it is a fruitful research direction.

4 Algorithms

We now describe two algorithms for graph simplification. Both algorithms are
developed for the MaxCover problem. As already noted, any algorithm for
MaxCover can be used to solve MinArcSet by applying binary search on
the coverage score.

In addition to the algorithms discussed below, we have also formulated
MaxCover as an integer program. In Section 5 we apply a standard linear
programming solver to find optimal solutions for small problem instances.
We also experiment with a simple rounding technique to find good solutions
given a fractional solution to the linear program. Whether more sophisticated
algorithms based on the linear programming formulation can be devised is an
interesting open question.

4.1 Greedy algorithm

The first algorithm, Greedy, is the standard greedy heuristic for covering
problems. It starts with the empty solution set A′ = ∅. At each step it
adds to A′ the arc (u, v) that yields the largest marginal gain to the cur-
rent coverage. The marginal gain for an arc (u, v) is defined as ρA′(u, v) =
CΠ(A′ ∪ {(u, v)}) − CΠ(A′). The algorithm terminates when it reaches a so-
lution of size k, i.e., |A′| = k.

Lemma 1 suggests that there is no immediate proof that Greedy is an ap-
proximation algorithm for our problem. In fact, we can construct problem



11

d

α1,2	
  β*

ek-­‐1

α1,2	
  β*

e2

α1,2	
  β*
b1

β1

e1

α1,2	
  β*

a

α1,2

bp

βp
c

β*

Fig. 3 An example where Greedy reaches only a O( 1
k

)-factor approximation.

instances for which Greedy gives bad solutions. In the lemma below, an al-
gorithm with approximation factor equal to c is an algorithm that, for any
problem instance, guarantees to find a solution whose value is at least c times
the value of the optimal solution in that instance.

Lemma 2 When every trace φ ∈ Π is a tree trace, the approximation factor
of Greedy is no better than O( 1

k ).

Proof. An example that satisfies the result of the lemma is shown in Figure 3.
In this example, we assume that the arc budget k is an even number, and we set
p = k/2. The graph contains the nodes a, c and d, as well as the nodes b1, . . . bp
all of which have an arc to node c, and the nodes e1, . . . ek−1 all of which
have an arc from node d. We assume two different traces (named α1 and α2)
observed on the nodes {a, d, e1, . . . , ek−1}, and p different traces (named βi)
each of which is observed on the nodes {bi, c, d, e1, . . . , ek−1}, for i = 1, . . . , p.

It is easy to see that Greedy selects as solution the k arcs {(a, d), (d, e1), . . . ,
(d, ek−1)} and achieves a coverage score of 2k. On the other hand, the optimal
solution consists of the k arcs {(b1, c), . . . , (bp, c), (c, d), (d, e1), . . . , (d, ep−1)}
and achieves a coverage score of p(p+ 1). By our selection of p, it follows that
the relative performance of Greedy with respect to the optimal is no better
than O( 1

k ).

This result only implies that there are adversarial examples for which
Greedy has poor performance. Furthermore, note that the traces in the exam-
ple of Figure 3 are trees and therefore the coverage function is supermodular.
The worst-case performance of Greedy is thus unaffected by supermodularity.
However, our empirical evaluation shows that in practice Greedy gives solutions
of good quality in all the datasets we experimented.

4.2 Minimum-norm base algorithm

Our second algorithm is based on mapping our cover-maximization problem to
a problem of minimizing a submodular function under size constraints. Mini-
mization of submodular functions has a rich theory (Fujishige 2005) much of



12

which utilizes the basic polyhedron associated with the submodular function. A
family of algorithms for minimizing submodular functions is based on finding
a minimum-norm base vector on the basic polyhedron. Our method, called
MNB, is an instantiation of such an algorithm. We start our discussion on
MNB by reviewing the related theory and then we present the details of the
algorithm for the specific problem we consider in this paper.

First recall from Section 3 that a function f : 2U → R, defined over
subsets of a ground set U , is submodular if it satisfies Equation (2). Given
a submodular function f and an integer k, the size-constrained minimization
problem is to find a set X ⊆ U that

minimizes f(X) subject to |X| ≤ k. (5)

We note that minimizing a submodular function without size constraints is a
polynomially-time solvable problem; alas, the faster strongly-polynomial al-
gorithm, by Iwata and Orlin (2009), has complexity O(n5F + n6), where
F is the time required to evaluate the function f . On the other hand, the
size-constrained version of the problem, as defined in problem (5), is also an
NP-hard problem, with an o(

√
n

lnn ) in-approximability lower bound (Svitkina
and Fleischer 2011). In this paper we follow the recently-developed approach
of Nagano et al (2011). Even though Nagano et al. do not provide an approx-
imation algorithm, they are able to show how to obtain optimal solutions for
some values of the size constraint k. These values can not be specified in ad-
vance, however, but are a part of the output of the algorithm. Turns out that
this property is not a limitation in practice.

4.2.1 Basic definitions

Consider the space Rm, where m = |U |, that is, each dimension of Rm is
associated with one and only one element i ∈ U . Let x denote a vector in
Rm. For any X ⊆ U , x(X) is the total weight those elements of x that are
at coordinates specified by X, that is, x(X) =

∑
i∈X xi. Given a submodular

function f : 2U → R, we can consider the submodular polyhedron P (f) and
the base polyhedron B(f) that are both subsets of Rm. In particular, these
polyhedra are defined as

P (f) = {x ∈ Rm | x(X) ≤ f(X), for all X ⊆ U},
B(f) = {x ∈ Rm | x ∈ P (f) and x(U) = f(U)}.

Consider now the minimum-norm base vector x∗ on B(f), that is,

x∗ = arg min

{
m∑
i=1

x2i | x ∈ B(f)

}
.

From the general theory of submodular functions it is known that the minimum-
norm base x∗ is closely related to the problem of unconstrained submodular



13

minimization (Fujishige 2005). In particular, the negative coordinates of x∗

specify the minimizer set X of f . If we define

X− = {i ∈ U | x∗i < 0}, and X0 = {i ∈ U | x∗i ≤ 0},

then X− is the unique minimal minimizer of f , and X0 is the unique maximal
minimizer of f .

4.2.2 The SSM algorithm

Recently, Nagano et al (2011) show how the minimum-norm base vector x∗

can also be used to give optimal solutions to the problem of size-constrained
submodular minimization, for some possible values of the budget k. Their
algorithm, named SSM, consists of the following two steps:

1. Compute the minimum-norm base x∗ ∈ B(f).

2. Let ξ1 < . . . < ξL denote all distinct values of the coordinates of x∗. Return
the sets T0 = ∅ and Tj = {i ∈ U | x∗i ≤ ξj}, for all j = 1, . . . , L.

Nagano et al. show the following surprising result.

Theorem 3 (Nagano et al (2011)) Let T0, T1, . . . , TL ⊆ U be the sets
returned by the SSM algorithm. Then, for all j = 0, 1, . . . , L, the set Tj is
the optimal solution for the size-constrained submodular minimization problem
defined in (5) for k = |Tj |.

Given the result of Theorem 3 one can find optimal solutions to the size-
constrained minimization problem for a number of values of k, which, however,
are prescribed in the structure of the minimum-norm base x∗ and not specified
in the input. Observe that the algorithm will find the optimal solution for
exactly as many different k as there are distinct values in the vector x∗. In
the worst case all elements of x∗ have the same value, which means that
the algorithm has only found the solution that corresponds to choosing every
item of the universe U . However, in practice we observe the vector x∗ to
contain several distinct elements that allow us to construct optimal solutions
for different values of the size constraint k.

From the computational point of view, the heart of the SSM algorithm
is finding the minimum-norm base x∗. Recall that x∗ is a point of the B(f)
polyhedron, which implies that x∗ will be in one of the extreme points of the
polyhedron. The problem of finding a minimum-norm vector in a polyhedron
defined by a set of linear constraints can be solved by the standard Wolfe
algorithm (Fujishige 2005, Wolfe 1976), which is not known to be polynomial,
but performs very well in practice. In Section 4.3 we provide a brief outline of
the algorithm, mostly in reference to implementing the algorithm efficiently in
our setting. More details on the algorithm can be found elsewhere (Fujishige
2005).



14

4.2.3 The MNB algorithm: applying SSM for MaxCover

Next we discuss how to apply the theory reviewed above on our problem
definition. The main observation stems from Theorem 2, namely from the fact
that the cover measure CΠ is supermodular when all trace DAGs are trees.
Thus, in the case that Π contains only tree traces, the MaxCover problem
asks to maximize a supermodular function CΠ over sets of size k. This is
equivalent to minimizing the submodular function −CΠ over sets of size k.
We can solve the latter problem by direct application of the SSM algorithm,
which only requires evaluations of the submodular function −CΠ . Note that
each dimension of the minumum-norm base x∗ corresponds to one and only
one arc in A. By Theorem 3 we can read the optimal arc subsets Tj from x∗.

Additionally, Theorem 3 implies that for the values of k not falling on any
of the values |Tj |, for j = 1, . . . , L, the algorithm does not yield an optimal
solution. We address this shortcoming by introducing a greedy strategy to
extend one of the sets returned by the minimum-norm base approach to a set
with size exactly k. In particular, let j∗ ≤ L be the largest index among all
j = 1, . . . , L such that |Tj∗ | ≤ k. The set Tj∗ is a feasible solution to our
problem since it has cardinality less then k. We can then use the set Tj∗ as
an initial solution, and extend it by iteratively adding arcs until we reach at
a solution set with cardinality exactly k. Adding arcs to the initial set Tj∗

is done by the greedy strategy used in Greedy. The coverage obtained by the
final solution is at least as good as the coverage obtained by Tj∗ . The MNB
algorithm can be summarized as follows:

1. Given the graph G = (N,A), the integer k and Π, run the SSM algorithm
with −CΠ . Of the solution sets given by SSM, let A′ denote the largest
that has size at most k.

2. If |A′| < k, run Greedy starting from the set A′, until A′ contains exactly
k arcs.

3. Return A′.

4.3 Comparing Greedy and MNB

The Greedy algorithm requires computing the marginal gain

ρA′(u, v) = CΠ(A′ ∪ {(u, v)})− CΠ(A′)

of an arc (u, v) with respect to a current solution A′. In particular, one iteration
of Greedy corresponds to a loop that computes the marginal gain ρA′(u, v) for
all arcs (u, v) ∈ A, and selects the arc that yields the largest gain.

It turns out that at the heart of the MNB algorithm there is a similar com-
putation, namely, a loop that computes marginal gains ρ(u, v) over all arcs
(u, v) ∈ A. To see how computation of marginal gains enters in the MNB al-
gorithm, we provide a high-level description of the Wolfe algorithm (Fujishige
2005, Wolfe 1976), which computes the minimum-norm base point x∗ of the



15

polyhedron B(f) for the submodular function f . The Wolfe algorithm tra-
verses extreme points of the polyhedron B(f) until finding a minimum-norm
point. It starts with an arbitrary, but feasible, extreme point x̂ ∈ B(f) and
iteratively moves to other extreme points with smaller norm. In each iteration,
the algorithm needs to find a new extreme point x̂ of B(f) that minimizes a
linear function w · x̂, where w ∈ Rm is a weight vector appropriately defined.
(Since w ∈ Rm with m = |A|, we can index the elements of w with arcs in A.)

Now, given the submodular function f = −CΠ and a vector w, finding the
extreme point x̂ in B(f) that minimizes w · x̂ can be solved efficiently by the
following greedy algorithm, due to Edmonds (2003):

1. Sort the coordinates of w in order of increasing value, i.e., find an ordering
π : {1, . . . ,m} → A such that wπ(1) ≤ . . . ≤ wπ(m).

2. For every i, compute

x̂π(i) = f(Aπ,i)− f(Aπ,i−1) = − (CΠ(Aπ,i)− CΠ(Aπ,i−1)) ,

where Aπ,i = {π(1), . . . , π(i)} ⊆ A, that is, the subset of A containing the
first i arcs according to the ordering π.

Observe that Aπ,i = Aπ,i−1 ∪ π(i), and thus x̂π(i) is simply the negative
marginal gain of the arc π(i) ∈ A when it is added to the set of arcs that
precede it in the ordering π. This means that one iteration of the Wolfe algo-
rithm involves almost exactly the same computation that Greedy must carry
out on each iteration: a loop that computes marginal gains over all arcs. The
only difference is that Greedy computes the marginal gains with respect to a
fixed A′, while the Wolfe algorithm computes them w.r.t. the sets induced by
the ordering π, and these sets are slightly different for each π(i) ∈ A.

From a computational point of view this difference between Greedy and
the Wolfe algorithm is in practice negligible. What matters is that in both
cases we must compute the marginal gain for every arc in A given some sub-
set of A. The complexity of this is linear in the size of Π. We also want to
point out that other computations carried out by the Wolfe algorithm only
involve solving small systems of linear equations, which is extremely fast in
comparison to evaluating CΠ even for a relatively small Π. This means that
the computationally intensive part is exactly the same for both Greedy and
MNB.

To speed up the above computation we employ the following optimization:
we iterate over all traces in Π, and we incrementally compute the contribution
of each trace φ ∈ Π to the marginal gains for every arc in A. Since traces are
in general small compared to the number of arcs in the graph, each iteration
can be done very fast. In practice this optimization leads to two orders of
magnitude improvement over a näıve computation of the cover measure. The
same optimization applies both to Greedy and to MNB algorithms.

Finally, note that Greedy computes the marginal gain of every arc k times,
while MNB computes the vector x̂ as many times as the number of iterations
required by the Wolfe algorithm to find a solution that is accurate enough.
As the Wolfe algorithm converges fast, the number of iterations required is



16

usually significantly smaller than typical values of k. As a result, in practice
the MNB algorithm is significantly faster than Greedy.

5 Empirical evaluation

In this section we report the experiments we conducted in order to assess of
our methods. We present four kinds of experiments:

1. Effectiveness with respect to the basic task of selecting a subset of arcs that
maximize the coverage, i.e., our objective function;

2. Efficiency of the algorithms;

3. Network reconstruction: comparing with the NetInf algorithm (Gomez-Rodriguez
et al 2010) for reconstructing an unobserved network;

4.Influence maximization: comparing with the Spine algorithm (Mathioudakis
et al 2011) in the task of sparsifying the social graph while trying to maximize
the spread of influence (Kempe et al 2003).

We start by presenting the experimental settings: implementation of the
algorithms and datasets.

Algorithms. We implemented the Greedy algorithm in Java, while our MNB
implementation is based on the Matlab Toolbox for Submodular Optimization
by Krause (2010). In the experiments we stop the iterations in Wolfe’s algo-
rithm after 50 rounds. As discussed above, both Greedy and MNB compute
marginal gains in almost exactly the same way. Our implementations of the
algorithms can thus share this part of the code. We implemented the marginal
gain computation in Java, and use the Java interface of Matlab to call this
from within the Wolfe algorithm.

As mentioned before, we also formulated our problem as a linear program.
This could possibly be used to devise efficient approximation algorithms by
applying existing techniques. These are left as future work, however. In the
experiments discussed here we simply solve the linear programs directly.

We consider both and integer program (IP), as well as its relaxed form (LP)
that we combine with a rounding scheme that selects the k edges having the
largest weight in the optimal fractional solution. The IP finds optimal solutions
(for small problem instances), and it is included in this study mainly to show
that the Greedy algorithm tends to find solutions that are close to optimal.
For small problem instances solving the IP can be a reasonable approach even
in practice. The LP will not produce an optimal solution in general. However,
we think it is an alternative worth studying, because it can be solved much
more efficiently than the IP, and even simple rounding schemes can produces
solutions that are reasonably good in practice.

Efficiency of both linear programming approaches heavily depend on the
solver being used. These experiments were carried out using Gurobi1, a highly
optimized linear programming solver.

1 www.gurobi.com

www.gurobi.com


17

Table 1 Dataset characteristics: numbers are rounded.

Dataset Traces Nodes Arcs Arcs in Max.
DAGs cover

kron-cp 2000 720 2040 1900 8970
YMeme-M 1800 1000 163000 11100 6100
YMeme-L 4500 2570 464000 86400 49800
MTrack-M 1800 35000 111000 1400 4500
MTrack-L 9000 44000 196000 4580 6800
Flixter 16400 12900 176000 32800 188400

Datasets. We extract samples from three different datasets, referred to as
YMeme, MTrack and Flixter. YMeme is a set of microblog postings in Yahoo!
Meme.2 Nodes correspond to users, actions to postings, and arcs (u, v) indicate
that v follows u.

The second dataset, MTrack,3 is a set of phrases propagated over promi-
nent online news sites in March 2009, obtained by the MemeTracker system
(Leskovec et al 2009). Nodes are news portals or news blogs and actions corre-
spond to phrases found to be repeated across several sites. Arcs (u, v) indicate
that the website v linked to the website u during March 2009.

We used a snowball sampling procedure to obtain several subsets from these
data sources. In the case of YMeme, we sampled a connected sub-graph of the
social network containing the users that participated in the most reposted
items. This yields very densely connected subgraphs. In the case of MTrack,
we sampled a set of highly reposted items posted by the most active sites. This
yields more loosely connected subgraphs.

Finally, our third data set comes from Flixster,4 a social movie site. The
data was originally collected by Jamali and Ester (2010). Here, an action
represents a user rating a movie. If user u rates “The King’s Speech,” and
later on u’s friend v does the same, we consider the action of rating “The
King’s Speech” as having propagated from u to v. We use a subset of the data
that corresponds to taking one unique “community,” obtained by means of
graph clustering performed using Graclus.5

We also experimented with random graphs and traces generated by a tool
supplied with the NetInf algorithm (Gomez-Rodriguez et al 2010). This tool
creates random graphs using the Kronecker model (Leskovec and Faloutsos
2007). In our experiments we used a “core-periphery” graph generated with
the seed matrix 0.962, 0.535; 0.535, 0.107 as was done by Gomez-Rodriguez
et al (2010).

A summary of the datasets is shown in Table 1. “Arcs in DAGs” refers to
the size of the union of the DAGs, and “Max. cover” is the maximum coverage
that a solution can reach.

2 meme.yahoo.com
3 snap.stanford.edu/data/memetracker9.html
4 www.cs.sfu.ca/~sja25/personal/datasets
5 www.cs.utexas.edu/users/dml/Software/graclus.html

meme.yahoo.com
snap.stanford.edu/data/memetracker9.html
www.cs.sfu.ca/~sja25/personal/datasets
www.cs.utexas.edu/users/dml/Software/graclus.html


18

101 102 103

0.2

0.4

0.6

0.8

1

k

co
ve

ra
ge

kron cp

 

 
greedy
LP
IP

101 102 103

0.2

0.4

0.6

0.8

1

k

co
ve

ra
ge

MTrack M

 

 
greedy
LP
IP

Fig. 4 Coverage with DAG traces.

Effectiveness. First we compare our algorithms in the basic task of selecting
a subset of arcs to maximize coverage. Overall we observe only a very small
difference in solution quality between the methods, and the Greedy algorithm
produces very good solutions despite its bad worst-case performance. Two
examples are shown in Fig. 4, with coverage plotted as a function of the budget
k. We want to emphasize that the Greedy algorithm finds solutions that are
surprisingly close to the optimal ones found by IP. With tree traces we can
also use the MNB algorithm. Fig. 5 shows again coverage vs. k for various
datasets, but also the improvement obtained over the Greedy algorithm. We
note that MNB finds optimal solutions as verified by solutions to the integer
program (IP), especially when k > 100. The MNB algorithm can improve
solution quality up to 10-15 percent when traces are trees.

Efficiency. The MNB algorithm is very fast, much faster than Greedy. Table 2
shows the running times of MNB and Greedy on various datasets to produce the
curves shown in Figure 5. (We do not report times for IP and LP because they
are more than one order of magnitude larger.) For example, with Flixter we
observe a speedup of two orders of magnitude together with a higher solution
quality. Note that this comparison is fair, because both Greedy and MNB use
the same implementation to compute marginal gains, and other operations
carried out by the algorithms are negligible. Table 2 also shows the number
of marginal gain computations carried out by both algorithms. These help to
explain the better performance of MNB. Note that the runtime needed for
a single marginal gain computation depends on the number of traces in the
input. For example, Flixter contains a larger number of traces than YMeme-L
(see Table 1), and hence Greedy runs much faster on YMeme-L than on Flixter,
even if the number of marginal gain computations is not that different.

Network reconstruction. In this experiment we use our approach to recon-
struct an unobserved network given a set of traces. Recall that we can convert
any sequence of node activations to DAGs that correspond to cliques where
a node has every previously activated node as a parent. Clearly the resulting
DAGs are not trees, and hence the MNB algorithm can not be used. The exper-



19

102 103

0.2

0.4

0.6

0.8

1

k

co
ve

ra
ge

kron cp

 

 
greedy
mnb
LP
IP

102 103

0.4

0.3

0.2

0.1

0

0.1

k

im
pr

ov
em

en
t

kron cp

 

 

mnb
LP
IP

102 103 104

0.2

0.4

0.6

0.8

1

k

co
ve

ra
ge

YMeme L

 

 
greedy
mnb
LP
IP

102 103 104

0

0.02

0.04

0.06

0.08

0.1

k

im
pr

ov
em

en
t

YMeme L

 

 
mnb
LP
IP

102 103

0.2

0.4

0.6

0.8

1

k

co
ve

ra
ge

MTrack L

 

 
greedy
mnb
LP
IP

102 103

0

0.05

0.1

0.15

k

im
pr

ov
em

en
t

MTrack L

 

 
mnb
LP
IP

102 103 104

0.2

0.4

0.6

0.8

1

k

co
ve

ra
ge

Flixter

 

 
greedy
mnb
LP
IP

102 103 104

0.02

0

0.02

0.04

0.06

0.08

0.1

k

im
pr

ov
em

en
t

Flixter

 

 
mnb
LP
IP

Fig. 5 Covering tree traces with kron-cp, YMeme-M and MTrack-M. Left side shows frac-
tion of traces covered as a function of k (notice logarithmic scale) and right side shows
relative improvement over the Greedy algorithm.



20

Table 2 Running time and number of marginal gain computations of the algorithms Greedy
and MNB with tree traces as input. (The numbers are rounded.)

time marginal gain computations
Dataset Greedy MNB Greedy MNB
kron-cp 10 sec 2 sec 2.6× 106 0.11× 106

YMeme-M 20 sec 2 sec 12.9× 106 0.25× 106

YMeme-L 5 min 16 sec 474× 106 1.54× 106

MTrack-M 17 sec 3 sec 3.4× 106 0.13× 106

MTrack-L 3 min 7 sec 49.8× 106 0.49× 106

Flixter 1 hour 30 sec 539× 106 1.64× 106

101 102 103

0.75

0.8

0.85

0.9

0.95

1

k

pr
ec

is
io

n

kron cp

 

 

greedy
netinf
LP

102 103
0.65

0.7

0.75

0.8

0.85

0.9

0.95

k

pr
ec

is
io

n

YMeme M

 

 

greedy
netinf
LP
IP

101 102 103
0

0.05

0.1

0.15

0.2

k
pr

ec
is

io
n

MTrack M

 

 

greedy
netinf

Fig. 6 Network reconstruction with kron-cp, YMeme-M and MTrack-M. On both real-
world datasets our methods are at least as good as the NetInf algorithm for k > 10 in
terms of precision. See also Fig. 7. (MTrack-M results in too many constraints for the linear
programming approaches to be feasible.)

iment is run using Greedy and the linear-programming algorithms. We compare
these against the original implementation of the NetInf algorithm by Gomez-
Rodriguez et al (2010) that is specifically designed for the network-inference
problem. Since all of our datasets have an underlying graph associated with
them, we can use this graph as the ground truth.

Fig. 6 shows precision (defined as the fraction of true positives in a set of k
arcs chosen by the algorithm) as a function of k. As shown by Gomez Rodriguez
et al. the NetInf algorithm has a very good performance on the synthetic
Kronecker graph, which we confirm. On the real-world datasets our approach
gives results that are at least as good as those obtained by NetInf, or slightly
better. (Results on the remaining datasets are qualitatively similar.) Notice
that with YMeme-M the rounded LP has in some cases a higher precision than
IP, even if IP is guaranteed to have the highest possible coverage. Alas, due to
the very large size of the problem when we assume the network to be complete,
we were not able to run IP and LP on all the possible datasets. Finally, we
note that even if the algorithms perform similarly in terms of precision, our
methods reach a higher coverage, as shown in Fig. 7.

Influence maximization. The problem of influence maximization (Kempe
et al 2003) has received a lot of attention in the data-mining community. The
problem is defined as follows. We are given a directed graph G = (N,A, p),
where p(u, v) represents the probability that an action performed by user u
will cause node v to perform the action, too. We then ask to select a set of



21

nodes S ⊆ N , |S| = k, such that the expected size of a propagation trace
that has S as the set of source nodes, is maximized. The problem is NP-hard
but due to the submodularity property of the objective function, the simple
greedy algorithm produces a solution with provable approximation guarantee.

Following Mathioudakis et al (2011) we experiment with graph simplifi-
cation as a pre-processing step before the influence maximization algorithm.
The idea is to show that computations on simplified graphs give up little in
terms of effectiveness (measured as the expected size of the trace generated
by S), but yield significant improvements in terms of efficiency.

The experiment is conducted following Mathioudakis et al (2011). First of
all we assume the independent cascade model as the underlying propagation
model. Given our graph G = (N,A) and the log of sequences D, we learn for
each arc (u, v) the probability p(u, v) with the same expectation-maximization
method used by Mathioudakis et al (2011), and using their own original im-
plementation. Then given the directed probabilistic graph G = (N,A, p), we
sparsify it with the Spine algorithm and with our Greedy method, and we
compare the effectiveness and the run time of the influence maximization al-
gorithm of Kempe et al (2003) when run on the whole of G = (N,A, p) and
on the two sparsified graphs.

It is worth noting that the comparison is “unfair” for our method for at
least two reasons: (i) both the evaluation process and the Spine algorithm
assume the same underlying propagation model (the independent cascade
model), while our method does not assume any propagation model; (ii) both
the evaluation process and Spine use exactly the same influence probabilities
associated to the arcs, while our methods only use the graph structure and
the set of traces D.

We sparsify YMeme-L to 25% of its original size by using both Spine and
Greedy, and compare the expected size of the cascades. We also measure the
run time of the influence maximization algorithm for different sizes of the seed
set when running on the full network and on the two sparsified ones.

Fig. 8 shows the results of the experiments. The running time of the in-
fluence maximization algorithm is comparable when run on the two sparsified
networks. Spine achieves larger cascades in expectations. This results is not
surprising given that Spine is designed to take advantage of the underlying
propagation model. Nevertheless, Greedy achieves good results with only a
constant difference from the results obtained on the full network.

6 Conclusions

We studied the problem of simplifying a graph while maintaining the maximum
connectivity required to explain observed activity in the graph. Our problem
can be expressed as follows: given a directed graph and a set of DAGs (or trees)
with specified roots, select a subset of arcs in the graph so as to maximize the
number of nodes reachable in all DAGs by the corresponding DAG roots. We



22

101 102 103

0.2

0.4

0.6

0.8

1

k

co
ve

ra
ge

kron cp

 

 
greedy
netinf
LP

102 103

0.2

0.4

0.6

0.8

1

k

co
ve

ra
ge

YMeme M

 

 
greedy
netinf
LP
IP

Fig. 7 Coverage in the network reconstruction experiment. See also Fig. 6.

5 10 15

10

20

30

40

50

60

70
expected influence

seed set size

no
de

s

 

 

Full network
spine 25%
greedy 25%

5 10 15

50

100

150

200

250

300

350

400
running time

seed set size

se
co

nd
s

 

 
Full network
spine 25%
greedy 25%

Fig. 8 Size of the cascades and run time for influence maximization.

studied the properties of this problem and we developed different algorithms,
which we evaluated on real datasets.

Several future research directions and open problems remain. Our NP-
hardness proof (Theorem 1) relies on traces being DAGs. What is the com-
plexity of the problem when all traces are trees? Also gaining a deeper under-
standing of the MNB algorithm is of interest. Under what conditions does it
produce solutions that cover a useful range of k? Finally, can we find other
efficient algorithms for the problem on the basis of the linear programming
formulation?

References

Arenas A, Duch J, Fernández A, Gómez S (2007) Size reduction of complex
networks preserving modularity. New Journal of Physics 9(6):176

Edmonds J (2003) Submodular functions, matroids, and certain polyhedra.
In: Combinatorial Optimization—Eureka, You Shrink!, Springer, pp 11–26



23

Elkin M, Peleg D (2005) Approximating k-spanner problems for k > 2. Theo-
retical Computer Science 337(1):249–277

Foti NJ, Hughes JM, Rockmore DN (2011) Nonparametric sparsification of
complex multiscale networks. PloS one 6(2):e16,431

Fujishige S (2005) Submodular functions and optimization, vol 58. Elsevier
Science

Fung WS, Hariharan R, Harvey NJ, Panigrahi D (2011) A general framework
for graph sparsification. In: Proceedings of the 43rd annual ACM symposium
on Theory of computing, ACM, pp 71–80

Gomez-Rodriguez M, Leskovec J, Krause A (2010) Inferring networks of diffu-
sion and influence. In: Proceedings of the 16th ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM, pp 1019–1028

Gomez-Rodriguez M, Balduzzi D, Schölkopf B (2011) Uncovering the temporal
dynamics of diffusion networks. In: Proceedings of the 28th International
Conference on Machine Learning, pp 561–568

Iwata S, Orlin JB (2009) A simple combinatorial algorithm for submodu-
lar function minimization. In: Proceedings of the twentieth Annual ACM-
SIAM Symposium on Discrete Algorithms, Society for Industrial and Ap-
plied Mathematics, pp 1230–1237

Jamali M, Ester M (2010) Modeling and comparing the influence of neighbors
on the behavior of users in social and similarity networks. In: 2010 IEEE
International Conference on Data Mining Workshops (ICDMW), IEEE, pp
336–343

Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence
through a social network. In: Proceedings of the ninth ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, ACM, pp
137–146

Krause A (2010) Sfo: A toolbox for submodular function optimization. The
Journal of Machine Learning Research 11:1141–1144

Leskovec J, Faloutsos C (2007) Scalable modeling of real graphs using kro-
necker multiplication. In: Proceedings of the 24th international conference
on Machine learning, ACM, pp 497–504

Leskovec J, Backstrom L, Kleinberg J (2009) Meme-tracking and the dynamics
of the news cycle. In: Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM, pp 497–506

Mathioudakis M, Bonchi F, Castillo C, Gionis A, Ukkonen A (2011) Sparsi-
fication of influence networks. In: Proceedings of the 17th ACM SIGKDD
international conference on Knowledge discovery and data mining, ACM,
pp 529–537

Misio lek E, Chen DZ (2006) Two flow network simplification algorithms. In-
formation processing letters 97(5):197–202

Nagano K, Kawahara Y, Aihara K (2011) Size-constrained submodular min-
imization through minimum norm base. In: Proceedings of the 28th Inter-
national Conference on Machine Learning, pp 977–984

Nemhauser GL, Wolsey LA, Fisher ML (1978) An analysis of approxima-
tions for maximizing submodular set functionsi. Mathematical Programming



24

14(1):265–294
Peleg D, Schäffer AA (1989) Graph spanners. Journal of graph theory

13(1):99–116
Quirin A, Cordon O, Santamaria J, Vargas-Quesada B, Moya-Anegón F (2008)

A new variant of the pathfinder algorithm to generate large visual science
maps in cubic time. Information processing & management 44(4):1611–1623

Serrano E, Quirin A, Botia J, Cordón O (2010) Debugging complex software
systems by means of pathfinder networks. Information Sciences 180(5):561–
583

Serrano MÁ, Boguñá M, Vespignani A (2009) Extracting the multiscale back-
bone of complex weighted networks. Proceedings of the national academy
of sciences 106(16):6483–6488

Srikant R, Yang Y (2001) Mining web logs to improve website organization.
In: Proceedings of the 10th international conference on World Wide Web,
ACM, pp 430–437

Svitkina Z, Fleischer L (2011) Submodular approximation: Sampling-based
algorithms and lower bounds. SIAM Journal on Computing 40(6):1715–1737

Toivonen H, Mahler S, Zhou F (2010) A framework for path-oriented network
simplification. In: Advances in Intelligent Data Analysis IX, Springer, pp
220–231

Wolfe P (1976) Finding the nearest point in a polytope. Mathematical Pro-
gramming 11(1):128–149

Zhou F, Malher S, Toivonen H (2010) Network simplification with minimal
loss of connectivity. In: Data Mining (ICDM), 2010 IEEE 10th International
Conference on, IEEE, pp 659–668


	Introduction
	Related work
	Problem definition
	Algorithms
	Empirical evaluation
	Conclusions

