Multi-Ob jective Design Space Exploration of Embedded
Systems in a 6rid Environment

Vincenzo Catania, Gianmarco De Francisci Morales, Alessandro G. Di Nuovo, Maurizio Palesi, Davide Patti

Dipartimento di Ingegneria Informatica e delle Telecomunicazioni, Universita degli Studi di Catania, Italy

Abstract

Design Space Exploration (DSE) is a hot issue in embedded system design. One of the main difficulties which
characterizes DSE problems is related to the computational power requirements for implementing any reliable DSE
strategy. To be reliable, a DSE strategy has to operate at the appropriate abstraction level. It cannot be too high as
important details which affect the objectives to be optimized might be not modeled appropriately. On the other hand,
operating at a low abstraction level, could make it unfeasible to evaluate the objectives for large real life data sets. The
use of system-level simulators built around an instruction-set simulator is considered as the most viable solution in
trading-off both the aspects of accuracy and efficiency. Although they allow to evaluate any system configuration
running a given application in a reasonable amount of time, they are still too expensive to be used as a core of a DSE
strategy which requires the simulation of thousands of system configurations. In this paper we assess the use of High
Performance Computing (HPC) in DSE of a complex highly parameterized VLIW based System-on-a-Chip (SoC)
platform. Experiments show that the conventional wisdom of linear decrease in exploration time as the number of

available processors increases is violated starting from a relatively low number of processors mainly due to
communication overhead and |/O bottleneck.

Simulation Environment in HPC infrastructure

Trimaran The parametenzed system arclutecture used in this worlo1s

| App.C __: e i Slcor | ' Emulib) |infrastructure based on HFL-PD [17] which 15 a parametric processor Fig.
' I 5 1. Block diagram of the framework meta-architecture

designed for research 1n instructi on-level parallelism of

EFIC/VLIW architectures1 The HFL-FD opcode repertoire,

= ERFIC-Explorer at its core, 15 similar to that of a EISC-ike load/store
Processar * HMDES - platform architecture, with standardinteger, floating point (including
Canfig }_.*' y fused 11111_1tip1§.r—_a::1c:1 type t:-}_:-eratic-ns] and memory operations.
“L__ | " Cacha | The configurations to be simulated were randomly
Memaory - 'ﬁnm o e I '{ stats chosen in the design space in the following Table:
' . Efn‘:; DLS1GN SPACLE O THL #ARAMLUTLRLZLD VIIW BASLD 85110
" Bus | - : - ; ARCHITECTURE,
5 mulator | Estimator Puwer
_ | Parimeler | Parameter space
| I hres Iuleger Uls 123336
| I‘ Ploat 1nits 123456
Mernory Limils 1,234
Biranch Units 1214
Fie 1. Block diagram of the framework. UPR;TPR “:jj-'&“i- 1;8
PIVCI 3204128
LTE 8.12.16

The main step was to integrate the Eptc-Explorer suite into the HPC _ _ : —
environment. Figure 2 shows the exploration flow on HPC environment. LID cache size LB IKE. ..128kB

Trnmaran requred some modifications to allow for multiple processes to operate LIDT cache block sive 'HH'M'F' 12813
on the same disk without conflicts. A tree directory structure was employed L i D1 ‘"3_‘31]” ASSOCLAtIVILY N 1:&'-4 .
under the workspace roct with the processor configurations’ 1dentifiers as LjU acae sEZe 12RB.61 E‘B""?_ljhﬁ
interm eciate nodes and the cache configurations’ as leaves. This way multiple L':U Hille block slas ﬁ"w_'ﬁl“&ﬂ'z_mﬁ
instances of Trimaran can compile codes for different architectures under L2UT cache associativity 218,16]
different directories without interfering with each other. SpAce size 7T 10
Brocess 0 | FFD?E“' 1 ‘ Pracesd i Architectural parameters can be classified in three main
(masier) (Save) (slave)) : : .
2 - " categories: register files, functional units and memory
L i eﬁ'?;iﬁ;; el subsvstem. The first two depend_, on the impl e_111e11tatic:-11_c:-f
E . broadcast : s L omvenmeEnt - the VLIW core and regard the size of the register files, in
i anvironman ’|:|:‘,_-rI Arormenit | terms of the number of registers contained 1n each of them,
' ! and the number of functional units for each type of unit
EFEIND —_—) | : supported. As far as the former are concemed, five
| - configurations T —— chfferent types of register files can be 1dentified: GPE (32-
configurations | g : SIMULATIONS bit registers for integers), FPE (64-bit registers for floating
| : - point values) PE (1-bat registers used to store the Boolean
= SIMULATIONS] values of predicated instructions), BTE (84-bit registers
SIMULATIONS | contaiming inform at on about possible future branches) and
! ! CE. (32-bit control registers contaiming information about
i i i the internal state of the processeor). The functional units
" r=suits . | - - R - - - .
: results ! involved are: mteger units, floating point units, memory
| COLLECT < ' | units (associated with load/store operations) and branch
PEIST : units (associated with branch operations). With respect to
L gl
WRITE the memory sub-system, the parameters that can be
modified are the size, asseciativity and block size for each
Lig. 2. Lxplosation flow on LIPL snvironmen:. of the three caches: First-level data cache (L1D), first-level
A bit of care had to be taken with benchmarks needing external input, instruction cache (L 1I) and second-level unmified cache
because of the multi-directory structure created the imtializat on secquence (L20).

tor the benchmarks had to be modified to integrate an in-place setup of the
executable. This way the simulation library of Trimaran (emulib) runs 1n an
environm ent equivalent to the onginal one.

Conclusions

In tlus paper we presented a case study of design space exploration of a complex highly parameterized VLIW based SoC platform.
The 18 free parameters which characterize the platform span a design space of over 10° system configurations. Even considering
an evaluation time of a few seconds for each configuration, exhaustive exploration would take hundreds of years on single machine.
We test the use of High Performance Computing (HPC) as a wiable solution to tackle with DSE related problems. However, a
maximum reduction of one order of magmtude in exploration time has been observed in our expernments. Meanwhile statistical or
machine learming approaches to the DSE problem presented in the literature, achieved savings of two order of magmtude than
classical approaches. This result remarks that the use of a combination of statistical and/or machine learmng approaches in HPC
envirommnents likely to be the most promising way to significantly reduce the exploration time.

* X

*
§ PO

* *
> < * Ricerca Scientifica

Sviluppo Tecnologico
Alta Formazione

UNIONE EUROPEA 2000- 2006

Tests and Results

The testing was done using the following configuration:

16xI1BM LS21 Blades with 2 Opteron 2.6 GHz dual core
processors (for a total of 4 cores per blade) equipped with 8GE
of DDR and a 73GE SATA HD, linked by Gigabit Ethernet.
The cluster used for the tests was configured to allow 1
process per core (4 processes per host) and one of the hosts
15 reserved to run cluster services and to manage the jobs, so
the maximum reachable number of MP| processes was G0,
The software package was installed on the dedicated host that
was also the cluster coordinator. The package was mirrored
via scp by the batch queue manager on a per-job basis on all
the hosts involved in the parallel computation.

The tests were done with no interference from other jobs in the
cluster, so the schedulertried to allocate the processes as
close as possible in order to fill one host before employing the
next one. This is an advantage because it reduces the number
of copies of the software to be made.

We run the simulation of 1000 configurations using a growing
number of processors, and even using an exponentially
growing number of processors the wall clock time was reduced
only by an order of magnitude that time needed to setup the
environment increases with the number of hosts. In our HPC
environment each host has its own storage unit, where the
simulation environment has to be copied. For this reason it
waste time even within a single host due to remote dispatching
to the queue manager, and, in addition, due to the use of
computational resources for the process creation and
management, and for the allocation and deallocation of
environment data.

3500 -
Bl Overhead
2 ‘l| = | . v .
00 [I'xecution
2500
= 2000
= 15040
= 1000
SO0
0
| £ o 16 24 iz 44
Mumber of Processors
1 1 1 1 1 1
B == audla
) —i—j:.eg
L \Y ——avs
‘\I _ —S—mregedec
ik A\ T
E -- I"n'l.k'.l—"— _“ﬂ-..,_h
-2 I'IIL._ "'5-______51
L]
2 - T, i
= b\‘\\ ™ e
Z N ~ ~—
5 0o- A N e
= ™,
= .
E 05- ‘\"x 7
W
g ", ‘-
g \ .)
= > an \““‘m \\"‘x
= " ~—
% 0 hﬂ‘“m x\uh H‘“H
Ty, T
11%& xh‘“m ~
|.| F H"H. 1“--.. -1
e — . g
01]]]]] T .
n = r 15 L 3R Al 35 ar 5

Srooceng uoks

(e previous ngure e efcency s reparted orn e v dxls,
expressed as the ratio of cpu time to the whole exploration
time used, obtained with the formula

CPU TIMEIWALL CLOCK TIMExN UM PROCESSES)

This gives us an idea of how much of the whole computing
time was spent doing something useful, and indirectly an index
of the efficiency of the calculation. This is also an indirect
estimate of the [/O boundness of the job configuration. As we
can notice we get high efficiency for 1 or 2 processes, but start
to get worse results with 4 processes. After that we get again
good results with 8 processors and then start to loose
efficiency almost linearly. This can be interpreted as an [/O
bottleneck effect, in fact up to 4 processes we are adding more
CPU power but we are using the same disk, so we quickly fill
the available disk bandwidth resulting in more idle wait. As
so0on as we getto 8 processes the benchmarks' efficiency
grows again because of the added disk. Simpler benchmarks
as wave that do not produce a lot of output are less affected by
this and get worse efficiency because of the copying overhead.
Furthermore the benefits of more disks rapidly get overtaken
by the increased overhead.

Workshop finale dei Progetti Grid del
PON "Ricerca” 2000-2006 - Avviso 1575

Catania, 10-12 Febbraio 2009

	Pagina 1

