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Abstract

Design Space Exploration (DSE) is a hot issue in embedded system design. One of the main difficulties which
characterizes DSE problems is related to the computational power requirements for implementing any reliable DSE
strategy. To be reliable, a DSE strategy has to operate at the appropriate abstraction level. It cannot be too high as
important details which affect the objectives to be optimized might be not modeled appropriately. On the other hand,
operating at a low abstraction level, could make it unfeasible to evaluate the objectives for large real life data sets. The
use of system-level simulators built around an instruction-set simulator is considered as the most viable solution in
trading-off both the aspects of accuracy and efficiency. Although they allow to evaluate any system configuration
running a given application in a reasonable amount of time, they are still too expensive to be used as a core of a DSE
strategy which requires the simulation of thousands of system configurations. In this paper we assess the use of High
Performance Computing (HPC) in DSE of a complex highly parameterized VLIW based System-on-a-Chip (SoC)
platform. Experiments show that the conventional wisdom of linear decrease in exploration time as the number of

available processors increases is violated starting from a relatively low number of processors mainly due to
communication overhead and |/O bottleneck.
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Conclusions

In tlus paper we presented a case study of design space exploration of a complex highly parameterized VLIW based SoC platform.
The 18 free parameters which characterize the platform span a design space of over 10° system configurations. Even considering
an evaluation time of a few seconds for each configuration, exhaustive exploration would take hundreds of years on single machine.
We test the use of High Performance Computing (HPC) as a wiable solution to tackle with DSE related problems. However, a
maximum reduction of one order of magmtude in exploration time has been observed in our expernments. Meanwhile statistical or
machine learming approaches to the DSE problem presented in the literature, achieved savings of two order of magmtude than
classical approaches. This result remarks that the use of a combination of statistical and/or machine learmng approaches in HPC
envirommnents likely to be the most promising way to significantly reduce the exploration time.
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Tests and Results

The testing was done using the following configuration:

16xI1BM LS21 Blades with 2 Opteron 2.6 GHz dual core
processors (for a total of 4 cores per blade) equipped with 8GE
of DDR and a 73GE SATA HD, linked by Gigabit Ethernet.
The cluster used for the tests was configured to allow 1
process per core (4 processes per host) and one of the hosts
15 reserved to run cluster services and to manage the jobs, so
the maximum reachable number of MP| processes was G0,
The software package was installed on the dedicated host that
was also the cluster coordinator. The package was mirrored
via scp by the batch queue manager on a per-job basis on all
the hosts involved in the parallel computation.

The tests were done with no interference from other jobs in the
cluster, so the schedulertried to allocate the processes as
close as possible in order to fill one host before employing the
next one. This is an advantage because it reduces the number
of copies of the software to be made.

We run the simulation of 1000 configurations using a growing
number of processors, and even using an exponentially
growing number of processors the wall clock time was reduced
only by an order of magnitude that time needed to setup the
environment increases with the number of hosts. In our HPC
environment each host has its own storage unit, where the
simulation environment has to be copied. For this reason it
waste time even within a single host due to remote dispatching
to the queue manager, and, in addition, due to the use of
computational resources for the process creation and
management, and for the allocation and deallocation of
environment data.
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Srooceng uoks

(e previous ngure e efcency s reparted orn e v dxls,
expressed as the ratio of cpu time to the whole exploration
time used, obtained with the formula

CPU TIMEIWALL CLOCK TIMExN UM PROCESSES)

This gives us an idea of how much of the whole computing
time was spent doing something useful, and indirectly an index
of the efficiency of the calculation. This is also an indirect
estimate of the [/O boundness of the job configuration. As we
can notice we get high efficiency for 1 or 2 processes, but start
to get worse results with 4 processes. After that we get again
good results with 8 processors and then start to loose
efficiency almost linearly. This can be interpreted as an [/O
bottleneck effect, in fact up to 4 processes we are adding more
CPU power but we are using the same disk, so we quickly fill
the available disk bandwidth resulting in more idle wait. As
so0on as we getto 8 processes the benchmarks' efficiency
grows again because of the added disk. Simpler benchmarks
as wave that do not produce a lot of output are less affected by
this and get worse efficiency because of the copying overhead.
Furthermore the benefits of more disks rapidly get overtaken
by the increased overhead.
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