
Distributed Adaptive Model Rules
for Mining Big Data Streams

Anh Thu Vu
Royal Institute of Technology

atvu@kth.se

Gianmarco De Francisci Morales
Yahoo Labs, Barcelona
gdfm@yahoo-inc.com

João Gama
University of Porto
jgama@fep.up.pt

Albert Bifet
HUAWEI Noah’s Ark Lab
bifet.albert@huawei.com

Abstract—Decision rules are among the most expressive data
mining models. We propose the first distributed streaming algo-
rithm to learn decision rules for regression tasks. The algorithm
is available in SAMOA (SCALABLE ADVANCED MASSIVE ONLINE
ANALYSIS), an open-source platform for mining big data streams.
It uses a hybrid of vertical and horizontal parallelism to distribute
Adaptive Model Rules (AMRules) on a cluster. The decision
rules built by AMRules are comprehensible models, where the
antecedent of a rule is a conjunction of conditions on the
attribute values, and the consequent is a linear combination of
the attributes. Our evaluation shows that this implementation is
scalable in relation to CPU and memory consumption. On a small
commodity Samza cluster of 9 nodes, it can handle a rate of more
than 30 000 instances per second, and achieve a speedup of up
to 4.7x over the sequential version.

I. INTRODUCTION

In this new media age, data is being generated from many
of our daily activities as we interact with software. The data
in a post to a social network, or a purchase with a credit card,
or an access to the GPS, can all potentially produce useful
information for interested parties. The recent advancements of
mobile devices has further increased the rate and amount of
data being generated, as people can generate data anywhere,
anytime, using different devices and technologies. There is
a lot of interest in extracting knowledge from this massive
amount of data and using it, e.g., to choose a suitable business
strategy, or to improve healthcare services. Moreover, many
applications are required to be able to process incoming data
and react to it in online using comprehensible prediction mech-
anisms. For example, when a bank monitors the transactions
of its clients to detect frauds, it needs to identify and verify the
fraud as soon as the transaction is performed and immediately
block it or adjust the prediction mechanism.

The task of analyzing, extracting patterns, and predicting
data from various sources, with massive volume and high
incoming rate, is referred to as big data stream mining. SAMOA
(SCALABLE ADVANCED MASSIVE ONLINE ANALYSIS) [1]
is a platform designed to solve the challenges of big data
stream mining tasks. It is a framework that eases the devel-
opment of new distributed machine learning algorithms and
the deployment of these implementations on top of state-of-
the-art distributed stream processing engines (DSPEs). It is
also a library of distributed data mining and machine learning
algorithms that allows users to use or customize existing ones.
By utilizing state-of-the-art DSPEs SAMOA enables distributed
algorithms to scale with the volume and incoming rate of

Work done while interning at Yahoo Labs.

data. Easy development of new algorithms or customization of
existing ones allow SAMOA’s users to solve different stream
mining tasks efficiently.

In this paper, we present a distributed implementation of
Adaptive Model Rules (AMRules) [2], an online decision
rule algorithm for regression tasks. The goal of this work
is to improve its scalability and enable it to handle big data
streams. A comparison of AMRules with other algorithms for
regression is out of the scope of this paper, and can be found
in the works of Almeida et al. [2], Duarte and Gama [3].

The reasons for which we choose to parallelize AMRules
are twofold. First, besides classifcation and clustering, regres-
sion is a third predominant task in machine learning; up to
now, SAMOA lacked a distributed algorithm for the latter task.
Second, the modularity of decision model rules make them
suitable for a distributed implementation.

Regression analysis has been widely studied in statistics,
pattern recognition, machine learning and data mining. It
estimates a functional relationship between a continuous de-
pendent variable and a set of independent variables. The most
expressive data mining models for regression are model trees
and regression rules. Model trees and model rules are among
the ones with better performance [4]. One important aspect of
rules, and the main advantage over trees, is modularity: each
rule can be interpreted per se. Both trees and rules do automatic
feature selection, are robust to outliers and irrelevant features,
exhibit high degree of interpretability and structural invariance
to monotonic transformation of the independent variables.

In summary, this paper makes the following contributions:

• We design the first distributed streaming algorithm for
regression based on a state-of-the-art algorithm;

• We explore the different trade-offs involved in parallelizing
AMRules and experiment with large real datasets;

• We make our implementation available as open-source
software as part of SAMOA.

The paper is organized as follows. We discuss related work
in Section II. In Section III, we present some preliminaries
about SAMOA. Section IV describes the new distributed rule
algorithms for evolving data streams. We report on our em-
pirical evaluation of the new methods proposed in Section V.
Finally, Section VI concludes the paper.

II. RELATED WORK

Currently, there are only a limited number of regression
algorithms for streaming data. One of them is Fast Incremental
Model Trees with Drift Detection (FIMT-DD) [5]. FIMT-
DD applies a modified version of the Hoeffding tree [6] to
incrementally build a tree model from incoming instances. It
uses the Page-Hinckley test to detect changes. If the test detects
a change at a node, an alternative subtree is built simultane-
ously with the old one from that node. The performance of
both subtrees is continuously monitored and compared. If its
performance of the old subtree falls below the new one, the
subtree is replaced.

A second notable algorithm is IBLStreams (Instance Based
Learner on Streams) [7]. It is an instance-based learning algo-
rithm (similar to k-NN) for both classification and regression.
Instead of managing a decision model as in model-based al-
gorithms, an instance-based algorithm stores and continuously
updates a subset of examples, called the case base. These
examples will only be processed when a prediction is actually
required. Upon the arrival of a new example xi, IBLStreams
will add it to the case base and find examples to be removed
among xi’s neighbors. The neighbors of xi are determined by
a distance function based on a value difference metric [8].

The Adaptive Model Rules (AMRules) [2], is the first rule-
based learning algorithm for regression problems on streams.
In AMRules the antecedent of a rule is a conjunction of
conditions on the attribute values, and the consequent is a
linear combination of the attributes. In order to maintain a
regression model compatible with the most recent state of
the process generating data, each rule uses a Page-Hinkley
test to detect changes in this process and react to changes by
pruning the rule set. Online learning might be strongly affected
by outliers. AMRules is also equipped with outlier detection
mechanisms to avoid model adaption using anomalous exam-
ples. Ensembles of AMRules have been studied by Duarte and
Gama [3], Almeida et al. [9].

III. PRELIMINARIES

SAMOA is an open-source distributed stream mining plat-
form developed at Yahoo Labs [10]. It allows easy implementa-
tion and deployment of distributed streaming machine learning
algorithms on supported DSPEs. Besides, it provides the ability
to integrate new DSPEs into the framework and leverage their
scalability for performing big data mining.

SAMOA is both a framework and a library. As a frame-
work, it allows the algorithm developer to abstract from the
underlying execution engine, and therefore reuse their code on
different engines. It features a pluggable architecture that al-
lows it to run on several distributed stream processing engines
such as Samza, Storm and S4. This capability is achieved by
designing a minimal API that captures the essence of modern
DSPEs. This API also allows to easily write new bindings to
port SAMOA to new execution engines. SAMOA takes care of
hiding the differences of the underlying DSPEs in terms of
API and deployment.

As a library, SAMOA contains implementations of state-of-
the-art algorithms for distributed machine learning on streams.
For classification, SAMOA provides a Vertical Hoeffding Tree

(VHT), a distributed streaming version of a decision tree. For
clustering, it includes an algorithm based on CluStream. The
library also includes meta-algorithms such as bagging and
boosting. The platform is useful in both research and real world
deployments.

An algorithm in SAMOA is represented by a directed graph
of operators that communicate via messages along streams
which connect pairs of nodes. Borrowing the terminology
from Storm, this graph is called a Topology. Each node in a
Topology is a Processor that sends messages through a Stream.
A Processor is a container for the code that implements the
algorithm. At runtime, several parallel instances of a Processor
are instantiated by the framework. A Stream can have a single
source but several destinations (akin to a pub-sub system). A
Topology is built by using a TopologyBuilder, which connects
the various pieces of user code to the platform code and
performs the necessary bookkeeping in the background.

A processor receives Content Events via a Stream. Algo-
rithm developers instantiate a Stream by associating it with
exactly one source Processor. When the destination Processor
want to connect to a Stream, it needs to specify the grouping
mechanism which determines how the Stream partitions and
routes the transported Content Events. Currently there are three
grouping mechanisms in SAMOA:

• Shuffle grouping, which routes the Content Events in a
round-robin way among the corresponding Processor in-
stances. This means each Processor instance receives the
same number of Content Events from the stream.

• Key grouping, which routes the Content Events based
on their key, i.e. the Content Events with the same key
are always routed by the Stream to the same Processor
instance.

• All grouping, which replicates the Content Events and
broadcasts them to all downstream Processor instances.

AMRules. Decision rule learning is a category of machine
learning algorithms whose goal is to extract a set of decision
rules from the training data. These rules are later used to
predict the unknown label values for test data. A rule is a
logic expression of the form:

IF antecedent THEN consequent

or, equivalently, head ← body, where head and body corre-
spond to the consequent and antecedent, respectively.

The body of a rule is a conjunction of multiple clauses
called features, each of which is a condition on an attribute
of the instances. Such conditions consist of the identity of an
attribute, a threshold value and an operator. For instance, the
feature “x < 5” is a condition on attribute x, with threshold
value 5 and operator less-than (<). An instance is said to be
covered by a rule if its attribute values satisfy all the features in
the rule body. The head of the rule is a function to be applied
on the covered instances to determine the their label values.
This function can be a constant or a function of the attributes
of the instances, e.g.,

ax+ b← x < 5

AMRules is an algorithm for learning regression rules on
streaming data. It incrementally constructs the rule model from

the incoming data stream. The rule model consists of a set of
normal rules (which is empty at the beginning), and a default
rule. Each normal rule is composed of 3 parts: a body which
is a list of features, a head with information to compute the
prediction for those instance covered by the rule, and statistics
of past instances to decide when and how to add a new feature
to its body. The default rule is a rule with an empty body.

For each incoming instance, AMRules searches the current
rule set for those rules that cover the instance. If an instance
is not covered by any rule in the set, it is considered as being
covered by the default rule. The heads of the rules are first
used to compute the prediction for the instance they cover.
Later, their statistics are updated with the attribute values and
label value of the instance. There are two possible modes of
operation: ordered and unordered. In ordered-rules mode, the
rules are checked according to the order of their creation, and
only the first rule is used for prediction and then updated. In
unordered-rules mode, all covering rules are used and updated.
In this work, we focus on the former which is more often used
albeit more challenging to parallelize.

Each rule tries to expand its body after it receives Nm

updates. In order to decide on the feature to expand, the rule
incrementally computes a standard deviation reduction (SDR)
measure [5] for each potential feature. Then, it computes the
ratio of the second-largest SDR value over the largest SDR
value. This ratio is used with a high confidence interval ε
computed using the Hoeffding bound [11] to decide to expand
the rule or not: if ratio + ε < 1, the rule is expanded with
the feature corresponding to the largest SDR value. Besides,
to avoid missing a good feature when there are two (or more)
equally good ones, rules are also expanded if the Hoeffding
bound ε falls below a threshold. If the default rule is expanded,
it becomes a normal rule and is added to the rule set. A new
default rule is initialized to replace the previous one.

Each rule records its prediction error and applies a modified
version of the Page-Hinkley test [12] for streaming data to
detect changes. If the test indicates that the cumulative error
has exceeded a threshold, the rule is evicted from the rule set.

The algorithm also employ outlier detection to check if an
instance, although being covered by a rule, is an anomaly. If
an instance is deemed as an anomaly, it is treated as if the rule
does not cover it and is checked against other rules.

A simplified version of the pseudo code for training AM-
Rules is shown in Algorithm 1.

IV. DISTRIBUTED AMRULES

This section describes two possible strategies to parallelize
AMRules that we propose.

A. Vertical Parallelism

In AMRules, each rule can evolve independently, as its
expansion is based solely on the statistics of instances it covers.
Also, searching for the best feature among all possible ones
in an attempt to expand a rule is computationally expensive.

Given these observations, we decide to parallelize AM-
Rules by delegating the training process of rules to multiple
learner processors, each of which handles only a subset of

Algorithm 1: Training algorithm of AMRules.
1

Input: S: Stream of examples
2 ordered-set: boolean flag
3 Nm: minimum number of examples before attempting

to expand
Result: RS: set of decision rules

4 begin
5 Let RS ← {}
6 Let defaultRule L ← 0
7 foreach example x ∈ S do
8 foreach rule r ∈ RS do
9 if r covers example x and x is not an

anomaly then
10 Compute prediction error e
11 Call PageHinkleyTest(e)
12 if change is detected then
13 Remove the rule r
14 else
15 Update statistics of r
16 if Number of examples in

Lr mod Nm = 0 then
17 r ← ExpandRule(r)
18 if ordered-set then
19 break
20 if no rule in RS covers x then
21 Update statistics of defaultRule
22 if Number of examples in L mod Nm = 0

then
23 RS ←

RS ∪ ExpandRule(defaultRule)
24

the rules. Besides the learners, a model aggregator processor
is also required to filter and redirect the incoming instances to
the correct learners. The aggregator manages a set of simplified
rules that have only head and body, i.e., do not keep statistics.
The bodies are used to identify the rules that cover an instance,
while the heads are used to compute the prediction. Each
instance is forwarded to the designated learners by using the
ID of the covering rule. At the learners, the corresponding
rules’ statistics are updated with the forwarded instance. This
parallelization scheme guarantees that the rules created are the
same as in the sequential algorithm. Figure 1 depicts the design
of this vertically parallelized version of AMRules, or Vertical
AMRules (VAMR for brevity).

The model aggregator also manages the statistics of the
default rule, and updates it with instances not being covered
by any other rule in the set. When the default rule is expanded
and adds a new rule to the set, the model aggregator sends
a message with the newly added rule to one of the learners,
which will be responsible for its management. The assignment
of a rule to a learner is done based on the rule’s ID. All sub-
sequent instances that are covered by this rule are forwarded
to the same learner.

At the same time, learners update the statistics of each
corresponding rule with each processed instance. When enough
statistics have been accumulated and a rule is expanded, the
new feature is sent to the model aggregator to update the

Model
Aggregator

Learner1

Learner2

Learnerp

Predictions

Instances

New Rules

Rule
Updates

Fig. 1: Vertical AMRules (VAMR).

body of the rule. Learners can also detect changes and remove
existing rules. In such an event, learners will inform the model
aggregator with a message containing the removed rule ID.

As each rule is replicated in the model aggregator and in
one of the learners, their bodies in model aggregator might
not be up-to-date. The delay between rule expansion in the
learner and model update in the aggregator depends mainly on
the queue length at the model aggregator. The queue length, in
turn, is proportional to the volume and speed of the incoming
data stream. Therefore, instances that are in the queue before
the model update event might be forwarded to a recently
expanded rule which no longer covers the instance.

Coverage test is performed again at the learner, thus the
instance is dropped if it was incorrectly forwarded. Given this
additional test, and given that rule expansion can only increase
the selectivity of a rule, when using unordered rules the
accuracy of the algorithm is unaltered. However, in ordered-
rules mode, these temporary inconsistencies might affect the
statistics of other rules because the instance should have been
forwarded to a different rule. We investigate the effect of such
inconsistencies on the accuracy of the algorithm in Section V.

B. Horizontal Parallelism

As shown in Section V, a bottleneck in VAMR is the
centralized model aggregator. Given that there is no straightfor-
ward way to vertically parallelize the execution of the model
aggregator while maintaining the order of the rules, we explore
an alternative based on horizontal parallelism. Specifically,
we introduce multiple replicas of the model aggregator, so
that each replica maintains the same copy of the rule set but
processes only a portion of the incoming instances.

Horizontally parallelized model aggregator. The design of
this scheme is illustrated in Figure 2. The basic idea is to
extend VAMR and accommodate multiple model aggregators
into the design. Each model aggregator still has a rule set
and a default rule. The behavior of this scheme is similar to
VAMR, except that each model aggregator now processes only
a portion of the input data, i.e., the amount of instances each of

Learners

Model
Aggregator1

Model
Aggregator2

Model
Aggregatorr

Predictions

Instances

New Rules

Rule
Updates

Learners
Learners

Fig. 2: AMRules with multiple horizontally parallelized Model
Aggregators.

Predictions

Instances

New Rules

Rule
Updates

Learners
Learners

Learners

Model
Aggregator2

Model
Aggregator2Model

Aggregators

Default Rule
Learner

New Rules

Fig. 3: Hybrid AMRules (HAMR) with multiple Model Ag-
gregators and separate Default Rule Learner.

them receives is inversely proportional to the number of model
aggregators. This will affect the prediction statistics and, most
importantly, the training statistics of the default rules.

Since each model aggregator processes only a portion of
the input stream, each default rule is trained independently
with different portions of the stream. Thus, these default rules
will evolve independently and potentially create overlapping
or conflicting rules. This fact also introduces the need for
a scheme to synchronize and order the rules created by
different model aggregators. Additionally, at the beginning, the
scheme is less reactive compared to VAMR as it requires more
instances for the default rules to start expanding. Besides, as
the prediction function of each rule is adaptively constructed
based on attribute values and label values of past instances,
having only a portion of the data stream will lead to having
less information and potentially lower accuracy. We show how

Source

Default
Rule

Learner

Learner

Model
Aggregator Evaluator

Fig. 4: Prequential evaluation task for HAMR. Single lines rep-
resent single messages (key grouping, shuffle grouping) while
double lines represent broadcast messages (all grouping).

to address these issues next.

Centralized rule creation. In order to address the issues with
distributed creation of rules, we move the default rule in model
aggregators to a specialized default rule learner processor. With
the introduction of this new component, some modifications
are required in the model aggregators, but the behavior of the
learners is still the same as in VAMR. However, as a result,
all the model aggregators will be in synch.

As the default rule is now moved to the designated learner,
those instances that are not covered by any rules are forwarded
from the model aggregators to this learner. This specialized
learner updates its statistics with the received instances and,
when the default rule expands, it broadcasts the newly created
rule to the model aggregators. The new rule is also sent to the
assigned learner, as determined by the rule’s ID.

The components of this scheme are shown in Figure 3.
Henceforth, we will refer to this scheme as Hybrid AMRules
(HAMR), as it is a combination of vertical and horizontal
parallelism strategies.

V. EVALUATION

We evaluate the performance of the 2 distributed implemen-
tations of AMRules, i.e., VAMR and HAMR, in comparison
to the centralized implementation in MOA1 (MAMR).

Evaluation methodology. We plug VAMR and HAMR into a
prequential evaluation task [13], where each instance is first
used to test and then to train the model. This evaluation task
includes a source processor which provides the input stream
and a evaluator processor which records the rate and accuracy

1http://moa.cms.waikato.ac.nz

of prediction results. The final task for HAMR is depicted in
Figure 4. The parallelism level of the model is controlled by
setting the number of learners p and the number of model
aggregators r. The task for VAMR is similar but the default
rule learner is excluded and model aggregator’s parallelism
level is always 1. Each task is repeated for five runs.

Datasets. We perform the same set of experiments with
3 different datasets, i.e., electricity, airlines and waveform.
Electricity is a dataset from the UCI Machine Learning Repos-
itory [14] which records the electricity power consumption (in
watt-hour) of a household from December 2006 to November
2010. The dataset contains more than 2 millions 12-attribute
records. Airlines is another real dataset recording the arrival
delay (in seconds) of commercial flights within the USA in
year 20082. It contains more than 5.8 millions records, each
has 10 numerical attributes. On the other hand, waveform is
generated using an artificial random generator. To generate an
instance, it picks a random waveform among the 3 available
ones. 21 attribute values for this instance are generated accord-
ing to the chosen waveform. Another 19 noise attributes are
generated and included in the new instance, making a total of
40 attributes for each instance. The label value is the index
of the waveform (0, 1, or 2). Although this dataset does not
fit perfectly to the definition of a regression task, it allows us
to test our implementations with a high number of numerical
attributes.

Setup. The evaluation is performed on an OpenStack3 cluster
of 9 nodes, each has 2 Virtual CPUs @ 2.3GHz and 4GB
of RAM. All the nodes run Red Hat Enterprise Linux 6. The
distributed implementations are evaluated on a Samza4 cluster
with Hadoop YARN 2.25 and Kafka 0.8.16. The Kafka brokers
coordinate with each other via a single-node ZooKeeper 3.4.37

instance. The replication factor of Kafka’s streams in these
experiments is 1. The performance of MAMR is measured on
one of the nodes in the cluster.

A. Throughput

The throughput of several variants of AMRules is shown in
Figure 5, 6 and 7, one for each dataset. HAMR-1 and HAMR-
2 stand for HAMR with 1 learner and HAMR with 2 learners.
The parallelism levels of VAMR represents the number of its
learners, while in the case of HAMR it represents the number
of model aggregators.

With electricity and waveform, the communication over-
head in VAMR (to send instances from model aggregator to
learners and evaluator) exceeds the throughput gained from
delegating the training process to the learners and results in
a lower overall throughput compared to MAMR’s. However,
with airlines, the performance of VAMR is better than MAMR.
To verify that the training process for airlines is more computa-
tionally intensive than the other two datasets and, thus, VAMR
is more effective for this dataset, we compare the statistics of
rules and predicates creation for the 3 datasets. The number of

2http://kt.ijs.si/elena ikonomovska/data.html
3http://www.openstack.org
4http://samza.incubator.apache.org
5http://hadoop.apache.org
6http://kafka.apache.org
7http://zookeeper.apache.org

http://moa.cms.waikato.ac.nz
http://samza.incubator.apache.org
http://hadoop.apache.org
http://kafka.apache.org
http://zookeeper.apache.org

0

5

10

15

20

25

30

35

1 2 4 8

T
hr

ou
gh

pu
t

(t
ho

us
an

ds
in

st
an

ce
s/

se
co

nd
)

Parallelism Level

MAMR
VAMR

HAMR-1
HAMR-2

Fig. 5: Throughput of distributed AMRules with electricity.

0

5

10

15

20

25

30

35

1 2 4 8

T
hr

ou
gh

pu
t

(t
ho

us
an

ds
in

st
an

ce
s/

se
co

nd
)

Parallelism Level

MAMR
VAMR

HAMR-1
HAMR-2

Fig. 6: Throughput of distributed AMRules with airlines.

rules created, rules removed, and features created (when a rule
is expanded) by MAMR with the 3 datasets are presented in
Table I. By subtracting the total number of rules removed from
the total number of rules created, we can have an estimation
of the average number of rules in the model for each dataset.
A higher number of rules in the model and a higher number
of features created suggest that the model is more complex
and it takes more processing power to search for the best new
feature when a rule attempts to expand.

TABLE I: Statistics for features and rules (wih MAMR) for
different datasets.

Electricity Airlines Waveform

Instances 2 049 280 5 810 462 1 000 000
Attributes 12 10 40
Result message size (B) 891 764 1446
Rules created 1203 2501 270
Rules removed 1103 1040 51
Avg. # Rules 100 1461 219
Features created 1069 10 606 1245

0

5

10

15

20

25

30

35

1 2 4 8

T
hr

ou
gh

pu
t

(t
ho

us
an

ds
in

st
an

ce
s/

se
co

nd
)

Parallelism Level

MAMR
VAMR

HAMR-1
HAMR-2

Fig. 7: Throughput of distributed AMRules with waveform.

Although VAMR can perform better than MAMR for
computationally intensive datasets, its throughput does not
change with different parallelism level. This is due to the
bottleneck at the model aggregator. The processing of each
instance at the model aggregator consists of 3 steps: finding the
covering rules, forwarding the instance to the corresponding
learners and applying covering rules to predict the label value
of the instance. Since the complexity of these 3 steps for an
instance is constant, the final throughput is unaffected by the
parallelism level.

The throughput of HAMR-1 and HAMR-2 exhibit a better
scalability compared to VAMR. Up to parallelism level of 4,
the throughput increases almost linearly with the number of
model aggregators. However, there is no or little improvement
when this number is increased from 4 to 8. As we measure this
throughput at a single evaluator, we suspect that the bottleneck
is in the maximum rate the evaluator can read from the output
streams of the model aggregators and default rule learner. To
investigate this issue, we plot the maximum throughput of
HAMR against the size of messages from model aggregators
and default rule learner to evaluator in Figure 8. The values of
throughput of a single-partition Samza stream with messages
of size 500B, 1000B and 2000B are used to compute the linear
regression line (reference line) in the figure. The message size
for different datasets is shown in Table I.

As reading is expected to be faster than writing in Samza
and Kafka, the maximum rate the evaluator in HAMR can read
from multiple stream partitions is expected to be higher than
the throughput represented by the reference line. This fact is
reflected in Figure 8 as the maximum throughput of HAMR for
the 3 datasets constantly exceeds the reference line. However,
the difference between them is relatively small. This result is
a strong indicator that the bottleneck is the maximum reading
rate of the evaluator. If there is no need to aggregate the result
from different streams, this bottleneck can be eliminated.

B. Accuracy

We evaluate accuracy of the different implementations of
AMRules in terms of Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE). Figure 9, 10 and 11 show the

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 4 8

M
A

E
/(

M
ax

-M
in

)

Parallelism Level

MAMR
VAMR

HAMR-1
HAMR-2

(a) MAE

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 4 8

R
M

SE
/(

M
ax

-M
in

)

Parallelism Level

MAMR
VAMR

HAMR-1
HAMR-2

(b) RMSE

Fig. 9: MAE and RMSE of distributed AMRules with electricity dataset.

0

10

20

30

40

50

50
0

A
ir

lin
es

E
le

ct
ri

ci
ty

10
00

W
av

ef
or

m

20
00

T
hr

ou
gh

pu
t

(t
ho

us
an

ds
in

st
an

ce
s/

se
co

nd
)

Result message size (B)

Reference
Max throughput

Fig. 8: Maximum throughput of HAMR vs message size.

MAE and RMSE for the three datasets, normalized by the
range of label values in each dataset.

Most of the figures show that error values of distributed
implementations presents very small fluctuations around the
corresponding MAMR error line. However, there is a signifi-
cant increment in the value of RMSE in HAMR with electricity
dataset when the number of model aggregators is increased to 4
or 8. Moreover, larger variances, i.e., standard error is greater
than 5% of the average MAE or RMSE, are also observed in
the case of higher parallelism levels (p ≥ 4) of HAMR. The
probable cause is that when a rule in the model aggregators
is out-of-sync with the corresponding one in the learners, i.e.,
model aggregators are not yet updated with a newly created
rule, the number of instances that use an outdated model is
multiplied by the throughput.

TABLE II: Memory consumption of MAMR for different
datasets.

Dataset Memory consumption (MB)

Avg. Std. Dev.

Electricity 52.4 2.1
Airlines 120.7 51.1
Waveform 223.5 8

TABLE III: Memory consumption of VAMR for different
datasets and parallelism levels.

Dataset Parallelism Memory Consumption (MB)

Model Aggregator Learner

Avg. Std. Dev. Avg. Std. Dev.

Electricity
1 266.5 5.6 40.1 4.3
2 264.9 2.8 23.8 3.9
4 267.4 6.6 20.1 3.2
8 273.5 3.9 34.7 29

Airlines
1 337.6 2.8 83.6 4.1
2 338.1 1.0 38.7 1.8
4 337.3 1.0 38.8 7.1
8 336.4 0.8 31.7 0.2

Waveform
1 286.3 5.0 171.7 2.5
2 286.8 4.3 119.5 10.4
4 289.1 5.9 46.5 12.1
8 287.3 3.1 33.8 5.7

C. Memory

The reference memory consumption of MAMR for differ-
ent datasets is presented in Table II. This table shows that
waveform consumes the largest amount of memory, followed
by airlines and then electricity.

Table III reports the memory consumption (average and
standard deviation) of model aggregator and learner processors

of VAMR for the 3 datasets with different parallelism levels.
First of all, we notice a high memory consumption at the model
aggregator. However this amount does not differ much for
different datasets. This suggests that, at the model aggregator,
there is a constant overhead in memory usage but the memory
consumption due to the growing decision model is small.

Second, the memory consumption per learner decreases as
more learners are used. As there is definitely some memory
overhead for each learner instance, there is no significant
reduction of memory usage per learner when the parallelism
level goes from 4 to 8. However, the result indicates that we
can spread a large decision model over multiple learners and
make it possible to learn very large models whose size exceeds
the memory capacity of a single machine.

VI. CONCLUSION

The increasing availability of data is creating new op-
portunities for machine learning applications. However, these
applications are facing challenges brought about by data’s
volume, velocity and variety. SAMOA, a framework for mining
big data streams in distributed environments, is designed to
address these three challenges and allow extraction of useful
knowledge from the available data.

In this paper, we developed and evaluated two variants of
distributed AMRules. A huge advantage of decision rules is
comprehensibility, required in many business decision making
applications. We begin by pipelining the processing of each
instances into two steps: training and predicting and assigning
these steps to learner and model aggregator processors in
VAMR. This approach has proved to increase the throughput
for “complex” datasets. Besides, VAMR also provides memory
scalability as the memory consumption of the model (the rule
set) is spread among multiple learners. However, VAMR is
not scalable in terms of throughput due to the bottleneck at
the single model aggregator. To address this issue, we devel-
oped HAMR, an extended version of VAMR with multiple
replicated model aggregators. HAMR is shown to be scalable
as it can improve the throughput proportionally to the number
of model aggregators while maintaining good accuracy. With
a commodity cluster of 9 nodes, we achieved a throughput of
more than 30 000 instances/second and a speedup of up to 4.7x
over the sequential version.

One of the causes for the reduction of accuracy in VAMR
and HAMR is the existence of cycles in the topologies, i.e.,
model aggregators send instances to learners and learners send
back update messages to model aggregator. These cycles delay
the update of the rules in model aggregators. Although the
reduction of accuracy in our evaluation is negligible, it is
expected to grow as the the throughput increases. Therefore,
a design with an acyclic topology is desired to improve the
accuracy, especially with higher parallelism level or higher
throughput. Alternatively, support for priority in streams could
also alleviate this problem.

This work can be extended by studying how to implement
distributed decision rules in the more challenging settings of
multi-target learning and structured learning, where instead
of predicting only one attribute value, we need to predict a
completes set of output attribute values.

ACKNOWLEDGMENT

Authors acknowledge financial support European Commis-
sion through the project MAESTRA (Grant number ICT-2013-
612944).

VII. REFERENCES
[1] G. De Francisci Morales and A. Bifet, “SAMOA: Scalable

Advanced Massive Online Analysis,” JMLR: Journal of
Machine Learning Research, 2014. [Online]. Available:
http://samoa-project.net

[2] E. Almeida, C. Ferreira, and J. Gama, “Adaptive model rules
from data streams,” in ECML-PKDD ’13: European
Conference on Machine Learning and Knowledge Discovery in
Databases, 2013, pp. 480–492.

[3] J. Duarte and J. Gama, “Ensembles of Adaptive Model Rules
from High-Speed Data Streams,” in BigMine ’14: 3rd
International Workshop on Big Data, Streams and
Heterogeneous Source Mining: Algorithms, Systems,
Programming Models and Applications, 2014, pp. 198–213.

[4] J. Fürnkranz, D. Gamberger, and N. Lavrac, Foundations of
Rule Learning, ser. Cognitive Technologies. Springer, 2012.

[5] E. Ikonomovska, J. Gama, and S. Džeroski, “Learning model
trees from evolving data streams,” Data Mining and
Knowledge Discovery, vol. 23, no. 1, pp. 128–168, 2011.

[6] P. Domingos and G. Hulten, “Mining high-speed data
streams,” in KDD ’00: 6th International Conference on
Knowledge Discovery and Data Mining, 2000, pp. 71–80.

[7] A. Shaker and E. Hüllermeier, “IBLStreams: A system for
instance-based classification and regression on data streams,”
Evolving Systems, vol. 3, no. 4, pp. 235–249, 2012.

[8] C. Stanfill and D. Waltz, “Toward memory-based reasoning,”
Communications of the ACM, vol. 29, no. 12, pp. 1213–1228,
1986.

[9] E. Almeida, P. Kosina, and J. Gama, “Random rules from data
streams,” in SAC ’13: 28th Annual ACM Symposium on
Applied Computing, 2013, pp. 813–814.

[10] G. De Francisci Morales, “SAMOA: A Platform for Mining
Big Data Streams,” in RAMSS ’13: 2nd International
Workshop on Real-Time Analysis and Mining of Social
Streams @WWW ’13, 2013.

[11] W. Hoeffding, “Probability inequalities for sums of bounded
random variables,” Journal of the American statistical
association, vol. 58, no. 301, pp. 13–30, 1963.

[12] E. Page, “Continuous inspection schemes,” Biometrika, pp.
100–115, 1954.

[13] J. Gama, R. Sebastião, and P. P. Rodrigues, “On evaluating
stream learning algorithms,” Machine Learning, vol. 90, no. 3,
pp. 317–346, 2013.

[14] K. Bache and M. Lichman, “UCI machine learning repository,”
2013. [Online]. Available: http://archive.ics.uci.edu/ml

http://samoa-project.net
http://archive.ics.uci.edu/ml

0

0.005

0.01

0.015

0.02

1 2 4 8

M
A

E
/(

M
ax

-M
in

)

Parallelism Level

MAMR
VAMR

HAMR-1
HAMR-2

(a) MAE

0

0.005

0.01

0.015

0.02

1 2 4 8

R
M

SE
/(

M
ax

-M
in

)

Parallelism Level

MAMR
VAMR

HAMR-1
HAMR-2

(b) RMSE

Fig. 10: MAE and RMSE of distributed AMRules with airlines dataset.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 4 8

M
A

E
/(

M
ax

-M
in

)

Parallelism Level

MAMR
VAMR

HAMR-1
HAMR-2

(a) MAE

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 4 8

R
M

SE
/(

M
ax

-M
in

)

Parallelism Level

MAMR
VAMR

HAMR-1
HAMR-2

(b) RMSE

Fig. 11: MAE and RMSE of distributed AMRules with waveform random generator.

	Introduction
	Related Work
	Preliminaries
	Distributed AMRules
	Vertical Parallelism
	Horizontal Parallelism

	Evaluation
	Throughput
	Accuracy
	Memory

	Conclusion
	REFERENCES

